हिंदी

Let \[F\Left( X \Right) = \Left( X + \Left| X \Right| \Right) \Left| X \Right|\] - Mathematics

Advertisements
Advertisements

प्रश्न

Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]

विकल्प

  • f is continuous

  •  f is differentiable for some x

  • f' is continuous

  • f'' is continuous

MCQ

उत्तर

(a) f is continuous
(c) f' is continuous

\[\text{ We have }, \]
\[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
\[ = x\left| x \right| + \left( \left| x \right| \right)^2 \]
\[ = x\left| x \right| + x^2 \]

`f(x) = {(2x^2 ,xge0),(0, x<0):}`
\[\text{To check continuity of} f\left( x \right) \text { at x } = 0\]
\[\left( \text {LHL at x } = 0 \right) = \lim_{x \to 0^-} f\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f\left( x \right)\]
\[ = \lim_{x \to 0^+} 2 x^2 \]
\[ = 0\]
\[\text { And } f\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f\left( 0 \right)\]
Therefore,f (x) is continous at x = 0
Hence,f(x) is continous everywhere.

\[\text{To check the differentiability of} f\left( x \right) \text { at} x = 0\]
\[\left(\text {  LHD at x } = 0 \right) = \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{0 - 0}{x} = 0\]
\[\left( \text { RHD at x } = 0 \right) = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} 2x = 0\]
LHD = RHD
Therefore,f(x) is derivative at x = 0

Hence,f(x) is differeentiable everywhere.

f' (x) = `{(4x,xge 0),(0 ,x<0):}`

\[\text{To check continuity of }f'\left( x \right) \text{ at }x = 0\]
\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f'\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f'\left( x \right)\]
\[ = \lim_{x \to 0^+} 4x\]
\[ = 0\]
\[\text { And } f'\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f'\left( 0 \right)\]
Therefore,f" (x) is not continous at x = 0
Hence ,f" (x) is not continous everywhere.

f" (x) =` {(4,xge0),(0, x<0):}`

\[\text { To check continuity of } f''\left( x \right) \text { at x }= 0\]

\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f''\left( x \right)\]

\[ = \lim_{x \to 0^-} 0\]

\[ = 0\]

\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f''\left( x \right)\]

\[ = \lim_{x \to 0^+} 4\]

\[ = 4\]

\[\text { Therefore, LHL} \neq \text { RHL } \]

\[\text { Therefore }, f''\left( x \right) \text { is not continuous at x = 0 }\]

\[\text { Hence, } f''\left( x \right) \text { is not continuous everywhere }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.4 | Q 5 | पृष्ठ १८

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Find the value of 'k' if the function

`f(X)=(tan7x)/(2x) ,  "for " x != 0 `

`=k`,            for x=0

is continuos at x=0


Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if }  \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


Show that f(x) = x1/3 is not differentiable at x = 0.


If f is defined by f (x) = x2, find f'(2).


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Discuss the continuity and differentiability of f (x) = |log |x||.


Let f (x) = |x| and g (x) = |x3|, then


The function f (x) =  |cos x| is


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


Examine the continuity of the following function :
f(x) = x2 - x + 9,          for x ≤ 3
      = 4x + 3,               for x > 3 
at x = 3.


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×