Advertisements
Advertisements
प्रश्न
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
विकल्प
f is continuous
f is differentiable for some x
f' is continuous
f'' is continuous
उत्तर
(a) f is continuous
(c) f' is continuous
\[\text{ We have }, \]
\[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
\[ = x\left| x \right| + \left( \left| x \right| \right)^2 \]
\[ = x\left| x \right| + x^2 \]
`f(x) = {(2x^2 ,xge0),(0, x<0):}`
\[\text{To check continuity of} f\left( x \right) \text { at x } = 0\]
\[\left( \text {LHL at x } = 0 \right) = \lim_{x \to 0^-} f\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f\left( x \right)\]
\[ = \lim_{x \to 0^+} 2 x^2 \]
\[ = 0\]
\[\text { And } f\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f\left( 0 \right)\]
Therefore,f (x) is continous at x = 0
Hence,f(x) is continous everywhere.
\[\text{To check the differentiability of} f\left( x \right) \text { at} x = 0\]
\[\left(\text { LHD at x } = 0 \right) = \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{0 - 0}{x} = 0\]
\[\left( \text { RHD at x } = 0 \right) = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} 2x = 0\]
LHD = RHD
Therefore,f(x) is derivative at x = 0
Hence,f(x) is differeentiable everywhere.
f' (x) = `{(4x,xge 0),(0 ,x<0):}`
\[\text{To check continuity of }f'\left( x \right) \text{ at }x = 0\]
\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f'\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f'\left( x \right)\]
\[ = \lim_{x \to 0^+} 4x\]
\[ = 0\]
\[\text { And } f'\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f'\left( 0 \right)\]
Therefore,f" (x) is not continous at x = 0
Hence ,f" (x) is not continous everywhere.
f" (x) =` {(4,xge0),(0, x<0):}`
\[\text { To check continuity of } f''\left( x \right) \text { at x }= 0\]
\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f''\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f''\left( x \right)\]
\[ = \lim_{x \to 0^+} 4\]
\[ = 4\]
\[\text { Therefore, LHL} \neq \text { RHL } \]
\[\text { Therefore }, f''\left( x \right) \text { is not continuous at x = 0 }\]
\[\text { Hence, } f''\left( x \right) \text { is not continuous everywhere }.\]
APPEARS IN
संबंधित प्रश्न
Find the value of 'k' if the function
`f(X)=(tan7x)/(2x) , "for " x != 0 `
`=k`, for x=0
is continuos at x=0
Examine the following function for continuity:
f(x) = | x – 5|
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if } \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].
Find all point of discontinuity of the function
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
Show that f(x) = x1/3 is not differentiable at x = 0.
If f is defined by f (x) = x2, find f'(2).
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of f (x) = |log |x||.
Let f (x) = |x| and g (x) = |x3|, then
The function f (x) = |cos x| is
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
Examine the continuity of the following function :
f(x) = x2 - x + 9, for x ≤ 3
= 4x + 3, for x > 3
at x = 3.
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
f(x) = `{{:(|x - 4|/(2(x - 4))",", "if" x ≠ 4),(0",", "if" x = 4):}` at x = 4
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = `{{:(x^2/2",", "if" 0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",", "if" 1 < x ≤ 2):}` at x = 1
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
If f(x) = `x^2 sin 1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?