Advertisements
Advertisements
Question
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
Options
f is continuous
f is differentiable for some x
f' is continuous
f'' is continuous
Solution
(a) f is continuous
(c) f' is continuous
\[\text{ We have }, \]
\[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
\[ = x\left| x \right| + \left( \left| x \right| \right)^2 \]
\[ = x\left| x \right| + x^2 \]
`f(x) = {(2x^2 ,xge0),(0, x<0):}`
\[\text{To check continuity of} f\left( x \right) \text { at x } = 0\]
\[\left( \text {LHL at x } = 0 \right) = \lim_{x \to 0^-} f\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f\left( x \right)\]
\[ = \lim_{x \to 0^+} 2 x^2 \]
\[ = 0\]
\[\text { And } f\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f\left( 0 \right)\]
Therefore,f (x) is continous at x = 0
Hence,f(x) is continous everywhere.
\[\text{To check the differentiability of} f\left( x \right) \text { at} x = 0\]
\[\left(\text { LHD at x } = 0 \right) = \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{0 - 0}{x} = 0\]
\[\left( \text { RHD at x } = 0 \right) = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} 2x = 0\]
LHD = RHD
Therefore,f(x) is derivative at x = 0
Hence,f(x) is differeentiable everywhere.
f' (x) = `{(4x,xge 0),(0 ,x<0):}`
\[\text{To check continuity of }f'\left( x \right) \text{ at }x = 0\]
\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f'\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f'\left( x \right)\]
\[ = \lim_{x \to 0^+} 4x\]
\[ = 0\]
\[\text { And } f'\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f'\left( 0 \right)\]
Therefore,f" (x) is not continous at x = 0
Hence ,f" (x) is not continous everywhere.
f" (x) =` {(4,xge0),(0, x<0):}`
\[\text { To check continuity of } f''\left( x \right) \text { at x }= 0\]
\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f''\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f''\left( x \right)\]
\[ = \lim_{x \to 0^+} 4\]
\[ = 4\]
\[\text { Therefore, LHL} \neq \text { RHL } \]
\[\text { Therefore }, f''\left( x \right) \text { is not continuous at x = 0 }\]
\[\text { Hence, } f''\left( x \right) \text { is not continuous everywhere }.\]
APPEARS IN
RELATED QUESTIONS
Find the value of 'k' if the function
`f(X)=(tan7x)/(2x) , "for " x != 0 `
`=k`, for x=0
is continuos at x=0
Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
Show that
\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
The points of discontinuity of the function
\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\]
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
If \[f\left( x \right) = \left| \log_e |x| \right|\]
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
The function f(x) = |x| + |x – 1| is ______.
f(x) = |x| + |x − 1| at x = 1
If f(x) = `{{:("m"x + 1",", "if" x ≤ pi/2),(sin x + "n"",", "If" x > pi/2):}`, is continuous at x = `pi/2`, then ______.
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
The composition of two continuous function is a continuous function.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.