English

Let \[F\Left( X \Right) = \Left( X + \Left| X \Right| \Right) \Left| X \Right|\] - Mathematics

Advertisements
Advertisements

Question

Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]

Options

  • f is continuous

  •  f is differentiable for some x

  • f' is continuous

  • f'' is continuous

MCQ

Solution

(a) f is continuous
(c) f' is continuous

\[\text{ We have }, \]
\[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
\[ = x\left| x \right| + \left( \left| x \right| \right)^2 \]
\[ = x\left| x \right| + x^2 \]

`f(x) = {(2x^2 ,xge0),(0, x<0):}`
\[\text{To check continuity of} f\left( x \right) \text { at x } = 0\]
\[\left( \text {LHL at x } = 0 \right) = \lim_{x \to 0^-} f\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f\left( x \right)\]
\[ = \lim_{x \to 0^+} 2 x^2 \]
\[ = 0\]
\[\text { And } f\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f\left( 0 \right)\]
Therefore,f (x) is continous at x = 0
Hence,f(x) is continous everywhere.

\[\text{To check the differentiability of} f\left( x \right) \text { at} x = 0\]
\[\left(\text {  LHD at x } = 0 \right) = \lim_{x \to 0^-} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{0 - 0}{x} = 0\]
\[\left( \text { RHD at x } = 0 \right) = \lim_{x \to 0^+} \frac{f\left( x \right) - f\left( 0 \right)}{x - 0}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} \frac{2 x^2 - 0}{x}\]
\[ = \lim_{x \to 0^-} 2x = 0\]
LHD = RHD
Therefore,f(x) is derivative at x = 0

Hence,f(x) is differeentiable everywhere.

f' (x) = `{(4x,xge 0),(0 ,x<0):}`

\[\text{To check continuity of }f'\left( x \right) \text{ at }x = 0\]
\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f'\left( x \right)\]
\[ = \lim_{x \to 0^-} 0\]
\[ = 0\]
\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f'\left( x \right)\]
\[ = \lim_{x \to 0^+} 4x\]
\[ = 0\]
\[\text { And } f'\left( 0 \right) = 0\]
\[\text { Here, LHL = RHL } = f'\left( 0 \right)\]
Therefore,f" (x) is not continous at x = 0
Hence ,f" (x) is not continous everywhere.

f" (x) =` {(4,xge0),(0, x<0):}`

\[\text { To check continuity of } f''\left( x \right) \text { at x }= 0\]

\[\left( \text { LHL at x } = 0 \right) = \lim_{x \to 0^-} f''\left( x \right)\]

\[ = \lim_{x \to 0^-} 0\]

\[ = 0\]

\[\left( \text { RHL at x } = 0 \right) = \lim_{x \to 0^+} f''\left( x \right)\]

\[ = \lim_{x \to 0^+} 4\]

\[ = 4\]

\[\text { Therefore, LHL} \neq \text { RHL } \]

\[\text { Therefore }, f''\left( x \right) \text { is not continuous at x = 0 }\]

\[\text { Hence, } f''\left( x \right) \text { is not continuous everywhere }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.4 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.4 | Q 5 | Page 18

RELATED QUESTIONS

Find the value of 'k' if the function

`f(X)=(tan7x)/(2x) ,  "for " x != 0 `

`=k`,            for x=0

is continuos at x=0


Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


If f is continuous at x = 0, then find f (0). 

Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


The function f(x) = |x| + |x – 1| is ______.


f(x) = |x| + |x − 1| at x = 1


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


The composition of two continuous function is a continuous function.


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×