English

The Points of Discontinuity of the Function F ( X ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 2 √ X , 0 ≤ X ≤ 1 4 − 2 X , 1 < X < 5 2 2 X − 7 , 5 2 ≤ X ≤ 4 I S ( a R E ) (A) X = 1, - Mathematics

Advertisements
Advertisements

Question

The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 

Options

  • x = 1 \[x = \frac{5}{2}\] 

  • \[x = \frac{5}{2}\] 

  • \[x = 1, \frac{5}{2}, 4\]

  •  x = 0, 4

MCQ

Solution

\[ x = \frac{5}{2}\]

 If  \[0 \leq x \leq 1\], then   \[f\left( x \right) = 2\sqrt{x}\] .

Since 

\[f\left( x \right) = 2\sqrt{x}\]  is a polynomial function, it is continuous. 
Thus,  
\[f\left( x \right)\]  is continuous for every  \[0 \leq x \leq 1\] .
If  \[1 < x < \frac{5}{2}\]  , then  
\[f\left( x \right) = 4 - 2x\] . Since 
\[2x\] is a polynomial function and 4 is a constant function, both of them are continuous. So, their difference will also be continuous.
Thus,
\[f\left( x \right)\]  is continuous for every 
\[1 < x < \frac{5}{2}\] .
If  \[\frac{5}{2} \leq x \leq 4\] , then  
\[f\left( x \right) = 2x - 7\] Since  
\[2x\] is a polynomial function and 7 is continuous function, their difference will also be continuous.
Thus,
\[f\left( x \right)\] is continuous for every 
\[\frac{5}{2} \leq x \leq 4\] .
Now,
Consider the point  
\[x = 1\] Here,
\[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left( 2\left( \sqrt{1 - h} \right) \right) = 2\]
\[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = \lim_{h \to 0} \left( 4 - 2\left( 1 + h \right) \right) = 2\] 
Also,  
\[f\left( 1 \right) = 2\sqrt{1} = 2\] 
\[\Rightarrow \lim_{x \to 1^-} f\left( x \right) = \lim_{x \to 1^+} f\left( x \right) = f\left( 1 \right)\]
Thus
\[f\left( x \right) \text{is continuous at x} = 1\], 
Now,
Consider the point  \[x = \frac{5}{2}\] Here ,
\[\lim_{x \to \frac{5}{2}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{5}{2} - h \right) = \lim_{h \to 0} \left( 4 - 2\left( \frac{5}{2} - h \right) \right) = - 1\]
\[\lim_{x \to \frac{5}{2}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{5}{2} + h \right) = \lim_{h \to 0} \left( 2\left( \frac{5}{2} - h \right) - 7 \right) = - 2\]
\[\Rightarrow \lim_{x \to \frac{5}{2}^+} f\left( x \right) \neq \lim_{x \to \frac{5}{2}^-} f\left( x \right)\]
Thus, 
\[f\left( x \right) \text{is discontinuous at x} = \frac{5}{2}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 38 | Page 47

RELATED QUESTIONS

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


Examine the following function for continuity:

f (x) = x – 5


A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the function f(x) at the point x = 0, where  \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]

 


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Define continuity of a function at a point.

 

Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 


Is every differentiable function continuous?


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


If f is continuous at x = 0, then find f (0). 

Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


Discuss the continuity of the function f(x) = sin x . cos x.


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×