English

The Values of the Constants A, B and C for Which the Function F ( X ) = ⎧⎪ ⎪⎨⎪⎪⎪ ⎩ ( 1 + a X ) 1 / X , X < 0 B , X = 0 ( X + C ) 1 / 3 − 1 ( X + 1 ) 1 / 2 − 1 , X > 0 May Be Continuous at X = 0, Are - Mathematics

Advertisements
Advertisements

Question

The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 

Options

  • \[a = \log_e \left( \frac{2}{3} \right), b = - \frac{2}{3}, c = 1\] 

  • \[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = - 1\]

  • \[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = 1\]

  • none of these

MCQ

Solution

\[ a = \log\frac{2}{3}, b = \frac{2}{3}, c = 1\]

\[\text{ Given }: f\left( x \right) = \begin{cases}\left( 1 + ax \right)^\frac{1}{x} , x < 0 \\ b, x = 0 \\ \frac{\left( x + c \right)^\frac{1}{3} - 1}{\left( x + 1 \right)^\frac{1}{2} - 1}, x > 0\end{cases}\]

If  \[f\left( x \right)\]  is continuous at  \[x = 0\]  then

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow \lim_{x \to 0^-} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( - h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( 1 - ah \right)^\frac{- 1}{h} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( a\frac{\log \left( 1 - ah \right)}{- ah} \right) = \log b\]
\[ \Rightarrow a \times 1 = \log b \left[ \because \lim_{x \to 0} \frac{\log \left( 1 + x \right)}{x} = 1 \right]\]
\[ \Rightarrow a = \log b\]
Also,
\[\lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]

\[\Rightarrow \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \times \frac{\left( h + 1 \right)^\frac{1}{2} + 1}{\left( h + 1 \right)^\frac{1}{2} + 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \lim_{h \to 0} \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \right) \times 2 = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1^\frac{1}{3}}{\left( h + c \right) - c} \right) = \frac{b}{2}\]
\[ \Rightarrow \frac{c^\left( \frac{1}{3} - 1 \right)}{3} = \frac{b}{2} \left[ \because \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n - 1} , \text{ where }c = 1 \right]\]
\[ \Rightarrow \frac{1}{3} = \frac{b}{2}\]
\[ \Rightarrow \frac{2}{3} = b\]
\[ \therefore a = \log\frac{2}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 37 | Page 46

RELATED QUESTIONS

If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 


Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Define continuity of a function at a point.

 

If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


The function  \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]

 


Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Write the points where f (x) = |loge x| is not differentiable.


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


The value of k which makes the function defined by f(x) = `{{:(sin  1/x",",  "if"  x ≠ 0),("k"",",  "if"  x = 0):}`, continuous at x = 0 is ______.


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",",  "if"  0 ≤ x < 2),((x - 1)x",",  "if"  2 ≤ x < 3):}` at x = 2


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×