Advertisements
Advertisements
Question
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
Options
\[a = \log_e \left( \frac{2}{3} \right), b = - \frac{2}{3}, c = 1\]
\[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = - 1\]
\[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = 1\]
none of these
Solution
\[\text{ Given }: f\left( x \right) = \begin{cases}\left( 1 + ax \right)^\frac{1}{x} , x < 0 \\ b, x = 0 \\ \frac{\left( x + c \right)^\frac{1}{3} - 1}{\left( x + 1 \right)^\frac{1}{2} - 1}, x > 0\end{cases}\]
If \[f\left( x \right)\] is continuous at \[x = 0\] then
\[ \Rightarrow \lim_{h \to 0} f\left( - h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( 1 - ah \right)^\frac{- 1}{h} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( a\frac{\log \left( 1 - ah \right)}{- ah} \right) = \log b\]
\[ \Rightarrow a \times 1 = \log b \left[ \because \lim_{x \to 0} \frac{\log \left( 1 + x \right)}{x} = 1 \right]\]
\[ \Rightarrow a = \log b\]
\[\Rightarrow \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \times \frac{\left( h + 1 \right)^\frac{1}{2} + 1}{\left( h + 1 \right)^\frac{1}{2} + 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \lim_{h \to 0} \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \right) \times 2 = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1^\frac{1}{3}}{\left( h + c \right) - c} \right) = \frac{b}{2}\]
\[ \Rightarrow \frac{c^\left( \frac{1}{3} - 1 \right)}{3} = \frac{b}{2} \left[ \because \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n - 1} , \text{ where }c = 1 \right]\]
\[ \Rightarrow \frac{1}{3} = \frac{b}{2}\]
\[ \Rightarrow \frac{2}{3} = b\]
\[ \therefore a = \log\frac{2}{3}\]
APPEARS IN
RELATED QUESTIONS
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
Find the value of 'a' for which the function f defined by
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions:
Define continuity of a function at a point.
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
Let \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
Discuss the continuity and differentiability of
If f (x) is differentiable at x = c, then write the value of
Write the points where f (x) = |loge x| is not differentiable.
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3` for x = 1
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
Find the value of 'k' if the function
f(x) = `(tan 7x)/(2x)`, for x ≠ 0.
= k for x = 0.
is continuous at x = 0.
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = |x| + |x − 1| at x = 1
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?