Advertisements
Advertisements
प्रश्न
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
पर्याय
\[a = \log_e \left( \frac{2}{3} \right), b = - \frac{2}{3}, c = 1\]
\[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = - 1\]
\[a = \log_e \left( \frac{2}{3} \right), b = \frac{2}{3}, c = 1\]
none of these
उत्तर
\[\text{ Given }: f\left( x \right) = \begin{cases}\left( 1 + ax \right)^\frac{1}{x} , x < 0 \\ b, x = 0 \\ \frac{\left( x + c \right)^\frac{1}{3} - 1}{\left( x + 1 \right)^\frac{1}{2} - 1}, x > 0\end{cases}\]
If \[f\left( x \right)\] is continuous at \[x = 0\] then
\[ \Rightarrow \lim_{h \to 0} f\left( - h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( 1 - ah \right)^\frac{- 1}{h} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( a\frac{\log \left( 1 - ah \right)}{- ah} \right) = \log b\]
\[ \Rightarrow a \times 1 = \log b \left[ \because \lim_{x \to 0} \frac{\log \left( 1 + x \right)}{x} = 1 \right]\]
\[ \Rightarrow a = \log b\]
\[\Rightarrow \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( h \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{\left( h + 1 \right)^\frac{1}{2} - 1} \times \frac{\left( h + 1 \right)^\frac{1}{2} + 1}{\left( h + 1 \right)^\frac{1}{2} + 1} \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \times \lim_{h \to 0} \left( \left( h + 1 \right)^\frac{1}{2} + 1 \right) = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1}{h} \right) \times 2 = b\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( h + c \right)^\frac{1}{3} - 1^\frac{1}{3}}{\left( h + c \right) - c} \right) = \frac{b}{2}\]
\[ \Rightarrow \frac{c^\left( \frac{1}{3} - 1 \right)}{3} = \frac{b}{2} \left[ \because \lim_{x \to a} \frac{x^n - a^n}{x - a} = n a^{n - 1} , \text{ where }c = 1 \right]\]
\[ \Rightarrow \frac{1}{3} = \frac{b}{2}\]
\[ \Rightarrow \frac{2}{3} = b\]
\[ \therefore a = \log\frac{2}{3}\]
APPEARS IN
संबंधित प्रश्न
A function f(x) is defined as,
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Show that
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]
For what value of k is the function
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
Find the points of discontinuity, if any, of the following functions:
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
Find f (0), so that \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\] becomes continuous at x = 0.
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Write the points where f (x) = |loge x| is not differentiable.
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
If y = ( sin x )x , Find `dy/dx`
If the function f is continuous at x = 0 then find f(0),
where f(x) = `[ cos 3x - cos x ]/x^2`, `x!=0`
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
f(x) = |x| + |x − 1| at x = 1
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "if" x < 4),("a" + "b"",", "if" x = 4),((x - 4)/(|x - 4|) + "b"",", "if" x > 4):}`
is a continuous function at x = 4.
Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",", "if" x ≤ 1),("q"x + 2",", "if" x > 1):}` is differentiable at x = 1
If f(x) = `{{:("m"x + 1",", "if" x ≤ pi/2),(sin x + "n"",", "If" x > pi/2):}`, is continuous at x = `pi/2`, then ______.