Advertisements
Advertisements
प्रश्न
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
उत्तर
Given f is continuous at x = O
∴ f (0) = `lim_(x->0) "f(x)"`
∴ f (0) = `lim_(x->0) [(3^"sin x" - 1)^2/("x" . "log" ("x" + 1))]`
`= lim_(x->0) [(3^"sin x" - 1)^2/("sin"^2 "x") × ("sin"^2"x")/("x" . "log" ("x" + 1))]`
∴ f (0) = `lim_(x->0) ((3^"sin x" - 1)/"sin x")^2 . (("sin"^2 "x")/"x"^2)/(("x log" (1 + "x"))/"x"^2)`
∴ f (0) = `lim_(x->0) ((3^"sin x" - 1)/"sin x")^2 . (lim_(x->0)(("sin x")/"x")^2)/(lim_(x->0) [("log" (1 + "x"))/"x"])`
`= "(log 3)"^2 . (1)^2/"log e" = ("log" 3)^2 xx 1/1`
∴ f (0) = `("log 3")^2`
APPEARS IN
संबंधित प्रश्न
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
Examine the following function for continuity:
f(x) = | x – 5|
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Find the value of 'a' for which the function f defined by
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
y = |x – 1| is a continuous function.
A continuous function can have some points where limit does not exist.
The composition of two continuous function is a continuous function.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.