Advertisements
Advertisements
प्रश्न
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
उत्तर
Given `f(1) = (-1)/3`
Consider
`lim_(x ->1) f(x) = lim_(x ->1) (3 - sqrt(2x + 7))/(x - 1)`
= `lim_(x ->1) (3 - sqrt(2x + 7))/(x - 1) xx (3 + sqrt(2x + 7))/(3 + sqrt(2x + 7))`
= `lim_(x ->1) (9 - 2x - 7)/((x - 1) (3 + sqrt(2x + 7))`
= `lim_(x ->1) (2 - 2x)/((x - 1) (3 + sqrt(2x + 7))`
= `lim_(x ->1) (-2(x - 1))/((x - 1) (3 + sqrt(2x + 7))`
= `lim_(x ->1) (-2)/(3 + sqrt(2x + 7)`
(`therefore x -> 1, ( x- 1) ≠ 0)`
= `(-2)/(3 + sqrt(2x + 7)`
= `(-2)/(3 + sqrt9)`
= `(-2)/(3 + 3)`
= `(-2)/6`
= `(-1)/3`
`lim_(x ->1) f(x) = f(1)`
Function is continuous at x = 1
APPEARS IN
संबंधित प्रश्न
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
Define continuity of a function at a point.
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
The value of f (0) so that the function
The value of b for which the function
Discuss the continuity and differentiability of f (x) = |log |x||.
Define differentiability of a function at a point.
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
The set of points where the function f (x) = x |x| is differentiable is
Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3` for x = 1
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.