मराठी

Write the Number of Points Where F (X) = |X| + |X − 1| is Continuous but Not Differentiable. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.

थोडक्यात उत्तर

उत्तर

Given: 

f(x)=|x|+|x1|
f(x)={-x-(x-1)x<0x-(x-1)0x<1x+(x-1)x1
f(x)={-2x+1x<010x<12x-1x1

When 

x<0 , we have:
f(x)=2x+1 which, being a polynomial function is continuous and differentiable.
When
0x<1 , we have: 
f(x)=1  which, being a constant function is continuous and differentiable on (0,1).
When  
x1, we have:
f(x)=2x1 which, being a polynomial function is continuous and differentiable on 
x>2
Thus, the possible points of non- differentiability of 
f(x)are 0 and 1.
Now,
(LHD at x = 0)
limx0f(x)f(0)x0
f(x)=2x+1,x<0
=limx02xx
(RHD at x = 0)
 
limx0+f(x)f(0)x0
=limx011x1 
= 0 
f(x)=1,0x<1
Thus, (LHD at x=0) ≠ (RHD at x=0)
Hence  
f(x)  is not differentiable at  
x=0
Now,  
f(x)  is not differentiable at 
x=1
(LHD at x = 1) 
limx1f(x)f(1)x1
=limx111x1
=0
(RHD at x = 1) 
limx1+f(x)f(1)x1
=limx12x11x1
=limx12(x1)x1
=2
Thus, (LHD atx =1) ≠ (RHD at x=1) 
Hence 
f(x)  is not differentiable at 
x=1 

Therefore, 0,1 are the points where f(x) is continuous but not differentiable.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.3 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.3 | Q 10 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Examine the continuity of the following function :

f(x)=x2-x+9forx3=4x+3forx>3}at x=3


Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

f(x)=x2-25x+5,x-5


A function f(x) is defined as,

f(x)={x2x6x3;ifx35;ifx=3  Show that f(x) is continuous that x = 3.

If f(x)={sin3xx,whenx01,whenx=0

Find whether f(x) is continuous at x = 0.

 

If f(x)={e1/x,ifx01,ifx=0 find whether f is continuous at x = 0.


Show that 

f(x)={|xa|xa,whenxa1,whenx=a is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

f(x)={(xa)sin(1xa),xa0,x=aatx=a

 


Determine the value of the constant k so that the function 

f(x)={x23x+2x1,ifx1k,ifx=1is continuous at x=1 


Find the value of k for which f(x)={1cos4x8x2, whenx0k, when x=0 is continuous at x = 0;

 


Find the points of discontinuity, if any, of the following functions:  f(x)={sin3xx, if x04, if x=0

 


Find the points of discontinuity, if any, of the following functions:  f(x)={x4+x3+2x2tan1x, if x010, if x=0


In the following, determine the value of constant involved in the definition so that the given function is continuou:  f(x)={5, if x2ax+b, if 2<x<1021, if x10


The value of f (0), so that the function 

f(x)=a2ax+x2a2+ax+x2a+xax   becomes continuous for all x, given by

The value of f (0) so that the function 

f(x)=2(2567x)1/8(5x+32)1/52,  0 is continuous everywhere, is given by


f(x)={1+px1pxx,1x<02x+1x2,0x1is continuous in the interval [−1, 1], then p is equal to

 


The value of b for which the function 

f(x)={5x4,0<x14x2+3bx,1<x<2 is continuous at every point of its domain, is 

The values of the constants ab and c for which the function  f(x)={(1+ax)1/x,x<0b,x=0(x+c)1/31(x+1)1/21,x>0 may be continuous at x = 0, are

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that the function 

f(x)={|2x3|[x],x1sin(πx2),x<1 is continuous but not differentiable at x = 1.


Discuss the continuity and differentiability of 

f(x)={(xc)cos(1xc),xc0,x=c

Let f(x)=(x+|x|)|x|


The function f (x) = e|x| is


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Evaluate :Sinxcos2x-2cosx-3dx


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Examine the continuity of the following function :

f(x)=x2-16x-4,for x4=8,for x=4} at x=4


If f (x) = 1-sin x(π-2x)2 , for x ≠ π2 is continuous at x = π4 , then find f(π2).


If the function f is continuous at x = 2, then find 'k' where

f(x) = x2+5x-1, for  1< x ≤ 2 
      = kx + 1 , for x > 2


If Y = tan-1 [cos2x-sin2xsin2x+cos2x] then find dydx


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = {1-cos4x8x2,x0k,x=0


Show that the function f defined by f(x) = {xsin 1x,x00,x=0 is continuous at x = 0.


If f(x) = 2cosx-1cotx-1,xπ4 find the value of f(π4)  so that f (x) becomes continuous at x = π4


The value of k which makes the function defined by f(x) = {sin 1x, if x0k, if x=0, continuous at x = 0 is ______.


f(x) = {|x|cos 1x,if x00,if x=0 at x = 0


f(x) = {1-coskxxsinx,  if x012, if x=0 at x = 0


If f(x) = x2sin 1x where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.