हिंदी

Write the Number of Points Where F (X) = |X| + |X − 1| is Continuous but Not Differentiable. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.

संक्षेप में उत्तर

उत्तर

Given: 

f(x)=|x|+|x1|
f(x)={-x-(x-1)x<0x-(x-1)0x<1x+(x-1)x1
f(x)={-2x+1x<010x<12x-1x1

When 

x<0 , we have:
f(x)=2x+1 which, being a polynomial function is continuous and differentiable.
When
0x<1 , we have: 
f(x)=1  which, being a constant function is continuous and differentiable on (0,1).
When  
x1, we have:
f(x)=2x1 which, being a polynomial function is continuous and differentiable on 
x>2
Thus, the possible points of non- differentiability of 
f(x)are 0 and 1.
Now,
(LHD at x = 0)
limx0f(x)f(0)x0
f(x)=2x+1,x<0
=limx02xx
(RHD at x = 0)
 
limx0+f(x)f(0)x0
=limx011x1 
= 0 
f(x)=1,0x<1
Thus, (LHD at x=0) ≠ (RHD at x=0)
Hence  
f(x)  is not differentiable at  
x=0
Now,  
f(x)  is not differentiable at 
x=1
(LHD at x = 1) 
limx1f(x)f(1)x1
=limx111x1
=0
(RHD at x = 1) 
limx1+f(x)f(1)x1
=limx12x11x1
=limx12(x1)x1
=2
Thus, (LHD atx =1) ≠ (RHD at x=1) 
Hence 
f(x)  is not differentiable at 
x=1 

Therefore, 0,1 are the points where f(x) is continuous but not differentiable.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.3 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.3 | Q 10 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

f(x)=x2-25x+5,x-5


Show that 

f(x)={|xa|xa,whenxa1,whenx=a is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

(i) f(x)={|x|cos(1x),x00,x=0atx=0

 


Find the value of 'a' for which the function f defined by

f(x)={asinπ2(x+1),x0tanxsinxx3,x>0  is continuous at x = 0.
 

 


Discuss the continuity of the function f(x) at the point x = 1/2, where f(x)={x,0x<1212,x=121x,12<x1 


Determine the value of the constant k so that the function 

f(x)={x23x+2x1,ifx1k,ifx=1is continuous at x=1 


Find the value of k for which f(x)={1cos4x8x2, whenx0k, when x=0 is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

f(x)={k(x22x), if x<0cosx, if x0 at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  f(x)={kx+1,ifx53x5,ifx>5 at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  f(x)={x225x5,x5k,x=5at x = 5


Prove that  f(x)={x|x|x,x02,x=0 is discontinuous at x = 0

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  f(x)={5, if x2ax+b, if 2<x<1021, if x10


Given the function  
f(x)=1x+2 . Find the points of discontinuity of the function f(f(x)).

If f(x)={x216x4, if x4k, if x=4  is continuous at x = 4, find k.


The function 

f(x)=4x24xx3

 


The function  f(x)={e1/x1e1/x+1,x00,x=0

 


The value of f (0), so that the function 

f(x)=a2ax+x2a2+ax+x2a+xax   becomes continuous for all x, given by

f(x)={1+px1pxx,1x<02x+1x2,0x1is continuous in the interval [−1, 1], then p is equal to

 


If  f(x)={asinπ2(x+1),x0tanxsinxx3,x>0 is continuous at x = 0, then a equals


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Find whether the function is differentiable at x = 1 and x = 2 

f(x)={xx12x2+3xx21x2x>2

If f is defined by f (x) = x2, find f'(2).


Discuss the continuity and differentiability of f (x) = |log |x||.


Is every continuous function differentiable?


Give an example of a function which is continuos but not differentiable at at a point.


If f (x) is differentiable at x = c, then write the value of 

limxcf(x)

The function f (x) =  |cos x| is


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Show that the function f given by f(x) = {e1x-1e1x+1,if x00, if x=0 is discontinuous at x = 0.


f(x) = {|x-a|sin 1x-a, if x00, if x=a at x = a


f(x) = {e1x1+e1x,if x00,if x=0 at x = 0 


f(x) = {1-coskxxsinx,  if x012, if x=0 at x = 0


Examine the differentiability of f, where f is defined by
f(x) = {x[x], if 0x<2(x-1)x, if 2x<3 at x = 2


Examine the differentiability of f, where f is defined by
f(x) = {1+x, if x25-x, if x>2 at x = 2


If f(x) = {mx+1, if xπ2sinx+n, If x>π2, is continuous at x = π2, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.