Advertisements
Advertisements
प्रश्न
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
उत्तर
We have, f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
At x = a
L.H.L. = `lim_(x -> "a"^-) |x - "a"| sin 1/(x - "a")`
= `lim_("h" -> 0) |"a" - "h" - "a"| sin(1/("a" - "h" - "a"))`
= `lim_("h" -> 0) - "h" sin 1/"h"`
= 0 × [an oscillating number between –1 and 1] = 0
R.H.L. = `lim_(x -> "a"^+) |x - "a"|sin(1/(x - "a"))`
= `lim_("h" -> 0) |"a" + "h" - "a"| sin(1/("a" + "h" - "a"))`
= `lim_("h" -> 0) "h" sin 1/"h"`
= 0 × [an oscillating number between –1 and 1] = 0
Also f(a) = 0 ...(Given)
Thus L.H.L. = R.H.L. = f(a)
So, f(x) is continuous at x = a.
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
Find all point of discontinuity of the function
Define continuity of a function at a point.
Let \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
The value of b for which the function
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
Discuss the continuity and differentiability of f (x) = |log |x||.
Is every continuous function differentiable?
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
y = |x – 1| is a continuous function.
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.