हिंदी

Discuss the Continuity of the Following Functions at the Indicated Point(S): F ( X ) = { 1 − X N 1 − X , X ≠ 1 N − 1 , X = 1 N ∈ N a T X = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

उत्तर

 Given:

\[f\left( x \right) = \binom{\frac{1 - x^n}{1 - x}, x \neq 1}{n - 1, x = 1}\]

Here, 

\[f\left( 1 \right) = n - 1\]

\[\lim_{x \to 1} f\left( x \right) = \lim_{x \to 1} \frac{1 - x^n}{1 - x}\]

\[ \Rightarrow \lim_{x \to 1} f\left( x \right) = \lim_{x \to 1} \left[ \left( 1 - x \right)^{n - 1} + \ prescript{n}{}{C}_1 \left( 1 - x \right)^{n - 2} x + \ prescript{n}{}{C}_2 \left( 1 - x \right)^{n - 3} x^2 + . . . + \ prescript{n}{}{C}_{n - 1} \left( 1 - x \right)^0 x^{n - 1} \right]\]

\[\Rightarrow \lim_{x \to 1} f\left( x \right) = 0 + 0 . . . + \left( 1 \right)^{n - 1} = 1 \neq f\left( 1 \right)\]

Thus, 

\[f\left( x \right) \text{is discontinuous at} x = 1\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.1 | Q 10.5 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Discuss the continuity and differentiability of f (x) = |log |x||.


Discuss the continuity and differentiability of f (x) = e|x| .


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


Let f (x) = |sin x|. Then,


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The function f(x) = |x| + |x – 1| is ______.


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


If f is continuous on its domain D, then |f| is also continuous on D.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×