Advertisements
Advertisements
प्रश्न
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
उत्तर
Since f is continuous at x = 0.
`lim_( x -> 0 ) f(x) = f(0) `
Given f(0) = k
∴ `lim_( x -> 0) f(x) = k` (i)
Now `lim_( x -> 0) f(x) = lim_( x -> 0 ) [(e^x - 1)sinx]/[x^2]`
= `lim_( x -> 0) ([e^x - 1]/[x])([sin x]/[x])`
= `lim_( x -> 0) ([e^x - 1]/[x]) lim_(x->0)([sin x]/[x])`
= log e x 1
= 1 x 1
`therefore lim_( x -> 0 ) = f(x) = 1` (ii)
from (i) and (ii)
k = 1
संबंधित प्रश्न
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if } x = 0\end{cases}\]
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
The value of f (0) so that the function
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
A continuous function can have some points where limit does not exist.
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
The value of k (k < 0) for which the function f defined as
f(x) = `{((1-cos"kx")/("x"sin"x")"," "x" ≠ 0),(1/2"," "x" = 0):}`
is continuous at x = 0 is: