Advertisements
Advertisements
प्रश्न
The value of f (0) so that the function
विकल्प
−1
1
26
none of these
उत्तर
none of these
For \[f\left( x \right)\] to be continuous at x = 0, we must have
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} \frac{{256}^\frac{1}{8} - \left( 256 - 7x \right)^\frac{1}{8}}{\left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5}}\]
\[ = - \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{x}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{x}}\]
\[ = \frac{- 7}{5} \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{7x}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{5x}}\]
\[ = \frac{7}{5} \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{\left( 256 - 7x \right) - 256}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{5x + 32 - 32}}\]
\[ = \frac{7}{5} \times \frac{\frac{1}{8} \times \left( 256 \right)^{- \frac{7}{8}}}{\frac{1}{5} \times \left( 32 \right)^\frac{- 4}{5}}\]
\[ = \frac{7}{5} \times \frac{\frac{1}{8} \times 2^4}{\frac{1}{5} \times 2^7}\]
\[ = \frac{7}{64}\]
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
If \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if } & x = 2\end{cases}\] is continuous at x = 2, find k.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
For what value of k is the following function continuous at x = 2?
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions:
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
The points of discontinuity of the function
\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\]
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Is every continuous function differentiable?
Write the points of non-differentiability of
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
The function f (x) = e−|x| is
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
Discuss the continuity of the function f(x) = sin x . cos x.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).
The composition of two continuous function is a continuous function.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`