English

The Value of F (0) So that the Function F ( X ) = 2 − ( 256 − 7 X ) 1 / 8 ( 5 X + 32 ) 1 / 5 − 2 , 0 is Continuous Everywhere, is Given by (A) −1 (B) 1 (C) 26 (D) None of These - Mathematics

Advertisements
Advertisements

Question

The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by

Options

  • −1

  • 1

  • 26

  • none of these

MCQ

Solution

none of these 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^\frac{1}{8}}{\left( 5x + 32 \right)^\frac{1}{5} - 2}\]

 For  \[f\left( x \right)\]  to be continuous at x = 0, we must have

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow f\left( 0 \right) = \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \frac{2 - \left( 256 - 7x \right)^\frac{1}{8}}{\left( 5x + 32 \right)^\frac{1}{5} - 2}\]
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} \frac{{256}^\frac{1}{8} - \left( 256 - 7x \right)^\frac{1}{8}}{\left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5}}\]
\[ = - \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{x}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{x}}\]
\[ = \frac{- 7}{5} \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{7x}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{5x}}\]
\[ = \frac{7}{5} \lim_{x \to 0} \frac{\frac{\left[ \left( 256 - 7x \right)^\frac{1}{8} - {256}^\frac{1}{8} \right]}{\left( 256 - 7x \right) - 256}}{\frac{\left[ \left( 5x + 32 \right)^\frac{1}{5} - {32}^\frac{1}{5} \right]}{5x + 32 - 32}}\]
\[ = \frac{7}{5} \times \frac{\frac{1}{8} \times \left( 256 \right)^{- \frac{7}{8}}}{\frac{1}{5} \times \left( 32 \right)^\frac{- 4}{5}}\]
\[ = \frac{7}{5} \times \frac{\frac{1}{8} \times 2^4}{\frac{1}{5} \times 2^7}\]
\[ = \frac{7}{64}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 19 | Page 44

RELATED QUESTIONS

Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Examine the following function for continuity:

f(x) = | x – 5|


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1

 


Define continuity of a function at a point.

 

If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\]  then f (x) is 


If y = ( sin x )x , Find `dy/dx`


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = |x| + |x − 1| at x = 1


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×