Advertisements
Advertisements
Question
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
Options
\[\frac{2}{3}\]
6
2
4
Solution
2
For f(x) to be continuous at x = 0, we must have
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \frac{\left( 27 - 2x \right)^\frac{1}{3} - 3}{9 - 3 \left( 243 + 5x \right)^\frac{1}{5}}\]
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} \frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{3\left( {243}^\frac{1}{5} - \left( 243 + 5x \right)^\frac{1}{5} \right)}\]
\[ = \frac{1}{3} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{x}}{\frac{\left( {243}^\frac{1}{5} - \left( 243 + 5x \right)^\frac{1}{5} \right)}{x}}\]
\[ = \frac{- 1}{3} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{x}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{x}}\]
\[ = \frac{2}{15} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{- 2x}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{5x}}\]
\[ = \frac{2}{15} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{27 - 2x - 27}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{243 + 5x - 243}}\]
\[ = \frac{2}{15} \times \frac{\frac{1}{3} \times {27}^\frac{- 2}{3}}{\frac{1}{5} \times {243}^\frac{- 4}{5}}\]
\[ = \frac{2}{15} \times \frac{\frac{1}{3} \times \frac{1}{{27}^\frac{2}{3}}}{\frac{1}{5} \times \frac{1}{{243}^\frac{4}{5}}}\]
\[ = 2\]
APPEARS IN
RELATED QUESTIONS
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x), "," if x <= 0),(4x+ 1, "," if x > 0):}` continuous at x = 0? What about continuity at x = 1?
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`
Show that the function defined by f (x) = cos (x2) is a continuous function.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
Extend the definition of the following by continuity
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if } x = 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if } - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]
Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x
What happens to a function f (x) at x = a, if
If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then write the value of k.
If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.
If \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is
The function
Let \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\] The value which should be assigned to f (x) at \[x = \frac{\pi}{4},\]so that it is continuous everywhere is
If \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at x = 0, so that the function is continuous at x = 0, is
The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is
If \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of
The function f (x) = |cos x| is
Let f (x) = |cos x|. Then,
The function f (x) = 1 + |cos x| is
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.
Let f(x) = |sin x|. Then ______.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.
Discuss the continuity of the following function:
f(x) = sin x + cos x