English

The Value of F (0), So that the Function F ( X ) = ( 27 − 2 X ) 1 / 3 − 3 9 − 3 ( 243 + 5 X ) 1 / 5 ( X ≠ 0 ) is Continuous, is Given by (A) 2 3 - Mathematics

Advertisements
Advertisements

Question

The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 

Options

  • \[\frac{2}{3}\]

  • 6

  • 2

  • 4

MCQ

Solution

For f(x) to be continuous at x = 0, we must have 

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \frac{\left( 27 - 2x \right)^\frac{1}{3} - 3}{9 - 3 \left( 243 + 5x \right)^\frac{1}{5}}\]
\[ \Rightarrow f\left( 0 \right) = \lim_{x \to 0} \frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{3\left( {243}^\frac{1}{5} - \left( 243 + 5x \right)^\frac{1}{5} \right)}\]
\[ = \frac{1}{3} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{x}}{\frac{\left( {243}^\frac{1}{5} - \left( 243 + 5x \right)^\frac{1}{5} \right)}{x}}\]
\[ = \frac{- 1}{3} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{x}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{x}}\]
\[ = \frac{2}{15} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{- 2x}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{5x}}\]
\[ = \frac{2}{15} \lim_{x \to 0} \frac{\frac{\left( 27 - 2x \right)^\frac{1}{3} - {27}^\frac{1}{3}}{27 - 2x - 27}}{\frac{\left( \left( 243 + 5x \right)^\frac{1}{5} - {243}^\frac{1}{5} \right)}{243 + 5x - 243}}\]
\[ = \frac{2}{15} \times \frac{\frac{1}{3} \times {27}^\frac{- 2}{3}}{\frac{1}{5} \times {243}^\frac{- 4}{5}}\]
\[ = \frac{2}{15} \times \frac{\frac{1}{3} \times \frac{1}{{27}^\frac{2}{3}}}{\frac{1}{5} \times \frac{1}{{243}^\frac{4}{5}}}\]
\[ = 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 18 | Page 44

RELATED QUESTIONS

If f (x) is continuous on [–4, 2] defined as 

f (x) = 6b – 3ax, for -4 ≤ x < –2
       = 4x + 1,    for –2 ≤ x ≤ 2

Show that a + b =`-7/6`


For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`


Show that the function defined by f (x) = cos (x2) is a continuous function.


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is


If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

The function f (x) = |cos x| is


Let f (x) = |cos x|. Then,


The function f (x) = 1 + |cos x| is


The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is


The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.


Let f(x) = |sin x|. Then ______.


`lim_("x"->0) (1 - "cos x")/"x"`  is equal to ____________.

`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.


Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


Discuss the continuity of the following function:

f(x) = sin x + cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×