English

The Function F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ 1 , | X | ≥ 1 1 N 2 , 1 N < | X | < 1 N − 1 , N = 2 , 3 , . . . 0 , X = 0 - Mathematics

Advertisements
Advertisements

Question

The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 

Options

  • is discontinuous at finitely many points

  • is continuous everywhere

  • is discontinuous only at  \[x = \pm \frac{1}{n}\]n ∈ Z − {0} and x = 0

  • none of these

MCQ

Solution

Given: 

\[f\left( x \right) = \begin{cases}1, \left| x \right| \geq 1 \\ \frac{1}{n^2}, \frac{1}{n} < \left| x \right| < \frac{1}{n - 1} \\ 0, x = 0\end{cases}\]
\[\Rightarrow f\left( x \right) = \begin{cases}1, - 1 \leq x \leq 1 \\ \frac{1}{n^2}, \frac{1}{n} < \left| x \right| < \frac{1}{n - 1} \\ 0, x = 0\end{cases}\]

Case 1:

\[\left| x \right| > 1 \text{ or } x < - 1 \text{ and } x > 1\]

Here, 

\[f\left( x \right) = 1\] , which is the constant function
So,
\[f\left( x \right)\]  is continuous for all

 \[\left| x \right| \geq 1 \text{ or } x \leq - 1 \text{ and } x \geq 1 .\]

Case 2:

\[\frac{1}{n} < \left| x \right| < \frac{1}{n - 1}, n = 2, 3, 4, . . .\]

Here,

\[f\left( x \right) = \frac{1}{n^2}, n = 2, 3, 4, . . .\], which is also a constant function.

So,

\[f\left( x \right)\]  is continuous for all
\[\frac{1}{n} < \left| x \right| < \frac{1}{n - 1}, n = 2, 3, 4, . . . .\]
Case 3: Consider the points x = -1 and x = 1.
We have
\[\left( LHL \text{ at } x = - 1 \right) = \lim_{x \to - 1^-} f\left( x \right) = \lim_{x \to - 1^-} 1 = 1\]
\[\left( RHL \text{ at } x = - 1 \right) = \lim_{x \to - 1^+} f\left( x \right) = \lim_{x \to - 1^+} \frac{1}{4} = \frac{1}{4} \left[ \because f\left( x \right) = \frac{1}{4} \text{ for  }- 1 < x < \frac{1}{2}, \text{ when } n = 2 \right]\]
\[\text{ Clearly } , \lim_{x \to - 1^-} f\left( x \right) \neq \lim_{x \to - 1^+} f\left( x \right) at x = - 1\]
\[\text{ So,}  f\left( x \right) \text{ is discontinuous at } x = - 1 . \]
Similarly,  f(x) is discontinuous at = 1.

Case 4: Consider the point x = 0.
We have
\[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \left( \frac{1}{n - 1} \right)^2\]
\[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \left( \frac{1}{n} \right)^2\]
\[\lim_{x \to 0^+} f\left( x \right) \neq \lim_{x \to 0^-} f\left( x \right)\]
Thus,  
\[f\left( x \right)\] is discontinuous at  \[x = 0\] .
At = 0, we have
\[\lim_{x \to 0^-} f\left( x \right) \neq 0 = f\left( 0 \right)\]
So,  
\[f\left( x \right)\] is discontinuous at  \[x = 0\] .
Case 5: Consider the point 
\[\left| x \right| = \frac{1}{n}, n = 2, 3, 4, . . .\]
We have 
\[\lim_{x \to \frac{1}{n}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \left( \frac{1}{n - 1} \right)^2\]
\[\lim_{x \to \frac{1}{n}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \left( \frac{1}{n} \right)^2\]
\[\lim_{x \to \frac{1}{n}^+} f\left( x \right) \neq \lim_{x \to \frac{1}{n}^-} f\left( x \right)\]
Hence,  
\[f\left( x \right)\]  is discontinuous only at   \[x = \pm \frac{1}{n}\] ,
\[n \in Z - \left\{ 0 \right\} \text{ and } x = 0\] .
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 17 | Page 44

RELATED QUESTIONS

Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}`  is a continuous function.


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if }  x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if  }  x \leq 2 \\ x - 1, & \text{ if }  x > 2\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


If  \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =


If the function  \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is 


If the function f (x) defined by  \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =

 


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


Find the values of a and b so that the function

\[f\left( x \right)\begin{cases}x^2 + 3x + a, & \text { if } x \leq 1 \\ bx + 2 , &\text {  if } x > 1\end{cases}\] is differentiable at each x ∈ R.

The function f (x) = |cos x| is


Let f (x) = |cos x|. Then,


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


Let f(x) = |sin x|. Then ______.


`lim_("x"->0) (1 - "cos x")/"x"`  is equal to ____________.

The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


Discuss the continuity of the following function:

f(x) = sin x – cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×