Advertisements
Advertisements
Question
Let f (x) = |cos x|. Then,
Options
f (x) is everywhere differentable
f (x) is everywhere continuous but not differentiable at x = n π, n ∈ Z
f (x) is everywhere continuous but not differentiable at \[x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z\].
(d) none of these
Solution
(c) f (x) is everywhere continuous but not differentiable at
\[f\left( x \right) = \left| \sin x \right|\]
`⇒ f(x) = {(cos x ,2npi le x < (4n +1)pi/2),(0,x = (4n +1)pi/2),(-cos x , (4n +1 )pi/2 < x < (4n +3)pi/2),(0 , x = (4n +3)pi/2),(cos x, (4n + 3)pi/2<xle(2n + 2)pi):}`
\[\text{When, x is in first or second quadrant}, i . e . , 2n\pi < x < \left( 2n + 1 \right)\pi ,\text { we have }\]
\[ f\left( x \right) = \text{sin x which being a trigonometrical function is continuous and differentiable in} \left( 2n\pi, \left( 2n + 1 \right)\pi \right)\]
\[\text{When, x is in third or fourth quadrant}, i . e . , \left( 2n + 1 \right)\pi < x < \left( 2n + 2 \right)\pi , \text { we have }\]
\[ f\left( x \right) = - \text{sin x which being a trigonometrical function is continuous and differentiable in} \left( \left( 2n + 1 \right)\pi, \left( 2n + 2 \right)\pi \right)\]
\[\text{Thus possible point of non - differentiability of} f\left( x \right)\text { are x } = 2n\pi \text { and } \left( 2n + 1 \right)\pi\]
\[\text {Now, LHD } \left[ at x = 2n\pi \right] = \lim_{x \to 2n \pi^-} \frac{f\left( x \right) - f\left( 2n\pi \right)}{x - 2n\pi}\]
\[ = \lim_{x \to 2n \pi^-} \frac{- \sin x - 0}{x - 2n\pi}\]
\[ = \lim_{x \to 2n \pi^-} \frac{- \cos x}{1 - 0} \left[ \text { By L'Hospital rule } \right]\]
\[ = - 1\]
\[\text { And RHD } \left( at x = 2n\pi \right) = \lim_{x \to 2n \pi^+} \frac{f\left( x \right) - f\left( 2n\pi \right)}{x - 2n\pi}\]
\[ = \lim_{x \to 2n \pi^+} \frac{\sin x - 0}{x - 2n\pi}\]
\[ = \lim_{x \to 2n \pi^+} \frac{\cos x}{1 - 0} \left[ \text { By L'Hospital rule }\right]\]
\[ = 1\]
\[ \therefore \lim_{x \to 2n \pi^-} f\left( x \right) \neq \lim_{x \to 2n \pi^+} f\left( x \right)\]
\[\text { So} f\left( x \right) \text { is not differentiable at x } = 2n\pi\]
\[\text { Now, LHD } \left[ at x = \left( 2n + 1 \right)\pi \right] = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{f\left( x \right) - f\left( \left( 2n + 1 \right)\pi \right)}{x - \left( 2n + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{\sin x - 0}{x - \left( 2n + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{\cos x}{1 - 0} \left[\text { By L'Hospital rule }\right]\]
\[ = - 1\]
\[\text { And RHD }\left( at x = \left( 2n + 1 \right)\pi \right) = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{f\left( x \right) - f\left( \left( 2n + 1 \right)\pi \right)}{x - \left( 2n + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{- \sin x - 0}{x - \left( 2n + 1 \right)\pi}\]
\[ = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{- \cos x}{1 - 0} \left[\text { By L'Hospital rule }\right]\]
\[ = 1\]
\[ \therefore \lim_{x \to \left( 2n + 1 \right) \pi^-} f\left( x \right) \neq \lim_{x \to \left( 2n + 1 \right) \pi^+} f\left( x \right)\]
\[\text{So} f\left( x \right) \text { is not differentiable at x} = \left( 2n + 1 \right)\pi\]
\[\text { Therefore,} f\left( x \right) \text{is neither differentiable at } 2n\pi \text { nor at } \left( 2n + 1 \right)\pi\]
\[i . e . f\left( x \right) \text{is neither differentiable at even multiple of pi nor at odd multiple of} \pi\]
\[i . e . f\left( x \right) \text{is not differentiable at x} = n\pi\]
\[\text{Therefore, f(x) is everywhere continuous but not differentiable at} n\pi .\]
APPEARS IN
RELATED QUESTIONS
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at x " = pi`
Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}` is a continuous function.
Show that the function defined by f(x) = |cos x| is a continuous function.
Examine sin |x| is a continuous function.
Examine the continuity of the function
\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]
Also sketch the graph of this function.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1
If \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if } x \geq 0 \\ - 2 x^2 + k, & \text{ if } x < 0\end{cases}\] then what should be the value of k so that f(x) is continuous at x = 0.
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if } x = 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if } - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]
Discuss the continuity of f(x) = sin | x |.
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
Show that f (x) = | cos x | is a continuous function.
What happens to a function f (x) at x = a, if
If \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\] is continuous at x = 0, find k.
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
The function
The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is
The function
The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is
If \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of
If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\] then f (x) is
The function f (x) = |cos x| is
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.
The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.
The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be
The function f(x) = 5x – 3 is continuous at x =
The function f(x) = x2 – sin x + 5 is continuous at x =
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.