मराठी

Let F (X) = |Cos X|. Then, (A) F (X) is Everywhere Differentiable (B) F (X) is Everywhere Continuous but Not Differentiable at X = N π, N ∈ Z - Mathematics

Advertisements
Advertisements

प्रश्न

Let f (x) = |cos x|. Then,

पर्याय

  • f (x) is everywhere differentable

  •  f (x) is everywhere continuous but not differentiable at x = n π, n ∈ Z

  • f (x) is everywhere continuous but not differentiable at \[x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z\].

  • (d) none of these

MCQ

उत्तर

(c) f (x) is everywhere continuous but not differentiable at

\[x = \left( 2n + 1 \right)\frac{\pi}{2}, n \in Z\]
We have,

\[f\left( x \right) = \left| \sin x \right|\]

`⇒ f(x) = {(cos x ,2npi le x < (4n +1)pi/2),(0,x = (4n +1)pi/2),(-cos x , (4n +1 )pi/2 < x < (4n +3)pi/2),(0 , x = (4n +3)pi/2),(cos x, (4n + 3)pi/2<xle(2n + 2)pi):}`

\[\text{When, x is in first or second quadrant}, i . e . , 2n\pi < x < \left( 2n + 1 \right)\pi ,\text {  we have }\]

\[ f\left( x \right) = \text{sin x which being a trigonometrical function is continuous and differentiable in} \left( 2n\pi, \left( 2n + 1 \right)\pi \right)\]

\[\text{When, x is in third or fourth quadrant}, i . e . , \left( 2n + 1 \right)\pi < x < \left( 2n + 2 \right)\pi , \text {  we have }\]

\[ f\left( x \right) = - \text{sin x which being a trigonometrical function is continuous and differentiable in} \left( \left( 2n + 1 \right)\pi, \left( 2n + 2 \right)\pi \right)\]

\[\text{Thus possible point of non - differentiability of} f\left( x \right)\text {  are x } = 2n\pi \text { and } \left( 2n + 1 \right)\pi\]

\[\text {Now, LHD } \left[ at x = 2n\pi \right] = \lim_{x \to 2n \pi^-} \frac{f\left( x \right) - f\left( 2n\pi \right)}{x - 2n\pi}\]

\[ = \lim_{x \to 2n \pi^-} \frac{- \sin x - 0}{x - 2n\pi}\]

\[ = \lim_{x \to 2n \pi^-} \frac{- \cos x}{1 - 0} \left[ \text { By L'Hospital rule } \right]\]

\[ = - 1\]

\[\text { And RHD } \left( at x = 2n\pi \right) = \lim_{x \to 2n \pi^+} \frac{f\left( x \right) - f\left( 2n\pi \right)}{x - 2n\pi}\]

\[ = \lim_{x \to 2n \pi^+} \frac{\sin x - 0}{x - 2n\pi}\]

\[ = \lim_{x \to 2n \pi^+} \frac{\cos x}{1 - 0} \left[ \text { By L'Hospital rule }\right]\]

\[ = 1\]

\[ \therefore \lim_{x \to 2n \pi^-} f\left( x \right) \neq \lim_{x \to 2n \pi^+} f\left( x \right)\]

\[\text { So} f\left( x \right) \text { is not differentiable at x } = 2n\pi\]

\[\text { Now, LHD } \left[ at x = \left( 2n + 1 \right)\pi \right] = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{f\left( x \right) - f\left( \left( 2n + 1 \right)\pi \right)}{x - \left( 2n + 1 \right)\pi}\]

\[ = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{\sin x - 0}{x - \left( 2n + 1 \right)\pi}\]

\[ = \lim_{x \to \left( 2n + 1 \right) \pi^-} \frac{\cos x}{1 - 0} \left[\text {  By L'Hospital rule }\right]\]

\[ = - 1\]

\[\text { And RHD }\left( at x = \left( 2n + 1 \right)\pi \right) = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{f\left( x \right) - f\left( \left( 2n + 1 \right)\pi \right)}{x - \left( 2n + 1 \right)\pi}\]

\[ = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{- \sin x - 0}{x - \left( 2n + 1 \right)\pi}\]

\[ = \lim_{x \to \left( 2n + 1 \right) \pi^+} \frac{- \cos x}{1 - 0} \left[\text {  By L'Hospital rule }\right]\]

\[ = 1\]

\[ \therefore \lim_{x \to \left( 2n + 1 \right) \pi^-} f\left( x \right) \neq \lim_{x \to \left( 2n + 1 \right) \pi^+} f\left( x \right)\]

\[\text{So} f\left( x \right) \text { is not differentiable at x} = \left( 2n + 1 \right)\pi\]

\[\text { Therefore,} f\left( x \right) \text{is neither differentiable at } 2n\pi \text { nor at } \left( 2n + 1 \right)\pi\]

\[i . e . f\left( x \right) \text{is neither differentiable at even multiple of pi nor at odd multiple of} \pi\]

\[i . e . f\left( x \right) \text{is not differentiable at x} = n\pi\]

\[\text{Therefore, f(x) is everywhere continuous but not differentiable at} n\pi .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.4 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.4 | Q 17 | पृष्ठ १९

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

A function f (x) is defined as
f (x) = x + a, x < 0
= x,       0 ≤x ≤ 1
= b- x,   x ≥1
is continuous in its domain.
Find a + b.


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if }  x < 0 \\ \cos 2x , & \text{ if }  x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The function 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2} , & x = 0\end{cases}\]  is continuous at x = 0, then k =

If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 


If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

The function f (x) = |cos x| is


The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is


The function f(x) = `"e"^|x|` is ______.


If f.g is continuous at x = a, then f and g are separately continuous at x = a.


`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.


Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


Discuss the continuity of the following function:

f(x) = sin x + cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×