मराठी

Let f ( x ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ x − 4 | x − 4 | + a , x < 4 a + b , x = 4 x − 4 | x − 4 | + b , x > 4 . Then, f (x) is continuous at x = 4 when - Mathematics

Advertisements
Advertisements

प्रश्न

Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 

पर्याय

  •  a = 0, b = 0

  • a = 1, b = 1

  • a = −1, b = 1

  • a = 1, b = −1.

MCQ

उत्तर

a = 1, b = −1. 

Given: 

\[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  x < 4 \\ a + b, \text{ if }  x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } x > 4\end{cases}\]

We have
(LHL at x = 4) = 

\[\lim_{x \to 4^-} f\left( x \right) = \lim_{h \to 0} f\left( 4 - h \right)\]
\[= \lim_{h \to 0} \left( \frac{4 - h - 4}{\left| 4 - h - 4 \right|} + a \right) = \lim_{h \to 0} \left( \frac{- h}{\left| - h \right|} + a \right) = a - 1\]

(RHL at x = 4) =  \[\lim_{x \to 4^+} f\left( x \right) = \lim_{h \to 0} f\left( 4 + h \right)\]

\[= \lim_{h \to 0} \left( \frac{4 + h - 4}{\left| 4 + h - 4 \right|} + b \right) = \lim_{h \to 0} \left( \frac{h}{\left| h \right|} + b \right) = b + 1\]

Also, 

\[f\left( 4 \right) = a + b\]

If f(x) is continuous at x = 4, then 

\[\lim_{x \to 4^-} f\left( x \right) = \lim_{x \to 4^+} f\left( x \right) = f\left( 4 \right)\]

\[\Rightarrow a - 1 = b + 1 = a + b\]
\[\Rightarrow a - 1 = a + b \text{ and } b + 1 = a + b\]
\[\Rightarrow b = - 1 \text{ and } a = 1\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 10 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

A function f (x) is defined as
f (x) = x + a, x < 0
= x,       0 ≤x ≤ 1
= b- x,   x ≥1
is continuous in its domain.
Find a + b.


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Show that the function defined by f (x) = cos (x2) is a continuous function.


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Find the values of a so that the function 

\[f\left( x \right) = \begin{cases}ax + 5, if & x \leq 2 \\ x - 1 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]

If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if }  }  1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.

 

Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].


Discuss the continuity of f(x) = sin | x |.


Show that f (x) = cos x2 is a continuous function.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


If the function f (x) defined by  \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =

 


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\] 

then at x = 0, f (x) is


The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.


The function f(x) = `"e"^|x|` is ______.


Let f(x) = |sin x|. Then ______.


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


Find the values of `a` and ` b` such that the function by:

`f(x) = {{:(5",", if  x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`

is a continuous function.


The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",",  if x ≠ 0),(k",",  if x = 0):}` is continuous at x = 0 is ______.


The function f(x) = x |x| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×