मराठी

If F ( X ) = Tan ( π 4 − X ) Cot 2 X for X ≠ π/4, Find the Value Which Can Be Assigned to F(X) at X = π/4 So that the Function F(X) Becomes Continuous Every Where in [0, π/2]. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].

बेरीज

उत्तर

When \[x \neq \frac{\pi}{4}\]

\[\tan \left( \frac{\pi}{4} - x \right)\] and  \[\cot 2x\]  are continuous in \[\left[ 0, \frac{\pi}{2} \right]\] . 
Thus, the quotient function 
\[\frac{\tan \left( \frac{\pi}{4} - x \right)}{\cot 2x}\] is continuous in \[\left[ 0, \frac{\pi}{2} \right]\] for each \[x \neq \frac{\pi}{4}\] .
So, if   \[f\left( x \right)\] is continuous at 
\[x = \frac{\pi}{4}\], then it will be everywhere continuous in  \[\left[ 0, \frac{\pi}{2} \right]\] .
Now,
Let us consider the point x = \[\frac{\pi}{4}\] .
Given
\[f\left( x \right) = \frac{\tan \left( \frac{\pi}{4} - x \right)}{\cot \left( 2x \right)}, x \neq \frac{\pi}{4}\]
We have
(LHL at x = \[\frac{\pi}{4}\]) =  \[\lim_{x \to \frac{\pi}{4}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} - h \right) = \lim_{h \to 0} \left( \frac{\tan\left( \frac{\pi}{4} - \frac{\pi}{4} + h \right)}{\cot\left( \frac{\pi}{2} - 2h \right)} \right) = \lim_{h \to 0} \left( \frac{\tan \left( h \right)}{\tan \left( 2h \right)} \right) = \lim_{h \to 0} \left( \frac{\frac{\tan \left( h \right)}{h}}{\frac{2 \tan \left( 2h \right)}{2h}} \right) = \frac{1}{2}\left( \frac{\lim_{h \to 0} \frac{\tan \left( h \right)}{h}}{\lim_{h \to 0} \frac{\tan \left( 2h \right)}{2h}} \right) = \frac{1}{2}\]
(RHL at x = \[\frac{\pi}{4}\]) =  \[\lim_{x \to \frac{\pi}{4}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} + h \right) = \lim_{h \to 0} \left( \frac{\tan \left( \frac{\pi}{4} - \frac{\pi}{4} - h \right)}{\cot \left( \frac{\pi}{2} + 2h \right)} \right) = \lim_{h \to 0} \left( \frac{\tan \left( - h \right)}{- \tan \left( 2h \right)} \right) = \lim_{h \to 0} \left( \frac{\tan \left( h \right)}{\tan \left( 2h \right)} \right) = \lim_{h \to 0} \left( \frac{\frac{\tan \left( h \right)}{h}}{\frac{2 \tan \left( 2h \right)}{2h}} \right) = \frac{1}{2}\left( \frac{\lim_{h \to 0} \frac{\tan \left( h \right)}{h}}{\lim_{h \to 0} \frac{\tan \left( 2h \right)}{2h}} \right) = \frac{1}{2}\]
If   \[f\left( x \right)\] is continuous at  \[x = \frac{\pi}{4}\] then
\[\lim_{x \to \frac{\pi}{4}^-} f\left( x \right) = \lim_{x \to \frac{\pi}{4}^+} f\left( x \right) = f\left( \frac{\pi}{4} \right)\]
∴  \[f\left( \frac{\pi}{4} \right) = \frac{1}{2}\]
Hence, for ​
\[f\left( \frac{\pi}{4} \right) = \frac{1}{2}\] , the function 
\[f\left( x \right)\] will be everywhere continuous in ​ \[\left[ 0, \frac{\pi}{2} \right]\] . 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.2 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.2 | Q 8 | पृष्ठ ३६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Discuss the continuity of the following function:

f (x) = sin x × cos x


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of a so that the function 

\[f\left( x \right) = \begin{cases}ax + 5, if & x \leq 2 \\ x - 1 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]

Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


Discuss the continuity of f(x) = sin | x |.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\]  is continuous at x = 0 or not.

 


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 


The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 


The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is

 


The function 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2} , & x = 0\end{cases}\]  is continuous at x = 0, then k =

Let  \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\]  The value which should be assigned to f (x) at  \[x = \frac{\pi}{4},\]so that it is continuous everywhere is


If the function f (x) defined by  \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =

 


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 


Let f (x) = |cos x|. Then,


The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\] 

then at x = 0, f (x) is


The function f(x) = `"e"^|x|` is ______.


Let f(x) = |sin x|. Then ______.


Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


The function f(x) = x |x| is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×