मराठी

The Function F ( X ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ X 2 / a , 0 ≤ X < 1 a , 1 ≤ X < √ 2 2 B 2 − 4 B X 2 , √ 2 ≤ X < ∞ is Continuous for 0 ≤ X < ∞, Then the Most Suitable Values of a and B Are (A) a = 1, B = −1 - Mathematics

Advertisements
Advertisements

प्रश्न

The function 

\[f\left( x \right) = \begin{cases}x^2 /a , & 0 \leq x < 1 \\ a , & 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \sqrt{2} \leq x < \infty\end{cases}\]is continuous for 0 ≤ x < ∞, then the most suitable values of a and b are

 

पर्याय

  •  a = 1, b = −1

  •  a = −1, b = 1 + \[\sqrt{2}\]

     

  • a = −1, b = 1

  • none of these

MCQ

उत्तर

a = -1, b = 1 

Given: 

\[f\left( x \right)\]  is continuous for 0 ≤ x < ∞.
This means that 
\[f\left( x \right)\]  is continuous for
\[x = 1, \sqrt{2}\]
Now,
If  \[f\left( x \right)\]  is continuous at x = 1, then
\[\lim_{x \to 1^-} f\left( x \right) = f\left( 1 \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( 1 - h \right) = a\]
\[ \Rightarrow \frac{\left( 1 - h \right)^2}{a} = a\]
\[ \Rightarrow \frac{1}{a} = a\]
\[ \Rightarrow a^2 = 1\]
\[ \Rightarrow a = \pm 1\]

If  \[f\left( x \right)\]  is continuous at x = \[\sqrt{2}\], then​

\[\lim_{x \to \sqrt{2}^-} f\left( x \right) = f\left( \sqrt{2} \right)\]
\[ \Rightarrow \lim_{h \to 0} f\left( \sqrt{2} - h \right) = \frac{2 b^2 - 4b}{2}\]
\[ \Rightarrow \lim_{h \to 0} a = b^2 - 2b\]
\[ \Rightarrow a = b^2 - 2b\]
\[ \Rightarrow b^2 - 2b - a = 0\]

∴ For a = 1, we have 

\[b^2 - 2b - 1 = 0\]
\[ \Rightarrow b = \frac{2 \pm \sqrt{4 - 4\left( - 1 \right)}}{2} = 1 \pm \sqrt{2}\]

Also,
For a = −1, we have

\[b^2 - 2b + 1 = 0\]
\[ \Rightarrow \left( b - 1 \right)^2 = 0\]
\[ \Rightarrow b = 1\]

Thus, 

\[a = - 1 \text{ and } b = 1\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 21 | पृष्ठ ४५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if  }  x \leq 2 \\ x - 1, & \text{ if }  x > 2\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


Discuss the continuity of f(x) = sin | x |.


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


The function f (x) = |cos x| is


The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.


The function f(x) = `"e"^|x|` is ______.


`lim_("x"->0) (1 - "cos x")/"x"`  is equal to ____________.

Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be


The function f(x) = 5x – 3 is continuous at x =


The function f(x) = x2 – sin x + 5 is continuous at x =


What is the values of' 'k' so that the function 'f' is continuous at the indicated point


Discuss the continuity of the following function:

f(x) = sin x – cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×