Advertisements
Advertisements
प्रश्न
पर्याय
−1
−1/2
1/2
1
उत्तर
\[- \frac{1}{2}\]
Given:
If \[f\left( x \right)\] is continuous at x = 0, then
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\sqrt{1 - ph} - \sqrt{1 + ph}}{- h} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( \sqrt{1 - ph} - \sqrt{1 + ph} \right)\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( 1 - ph - 1 - ph \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( - 2ph \right)}{- h\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \lim_{h \to 0} \left( \frac{\left( 2p \right)}{\left( \sqrt{1 - ph} + \sqrt{1 + ph} \right)} \right) = \lim_{h \to 0} \left( \frac{2h + 1}{h - 2} \right)\]
\[ \Rightarrow \left( \frac{\left( 2p \right)}{\left( 2 \right)} \right) = \left( \frac{1}{- 2} \right)\]
\[ \Rightarrow p = \frac{- 1}{2}\]
APPEARS IN
संबंधित प्रश्न
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\] is continuous at x = 1.
The value of b for which the function
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
If f is defined by f (x) = x2, find f'(2).
Give an example of a function which is continuos but not differentiable at at a point.
The set of points where the function f (x) = x |x| is differentiable is
The function f (x) = e−|x| is
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
Examine the continuity of the following function :
`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`
Discuss the continuity of the function f(x) = sin x . cos x.
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
A continuous function can have some points where limit does not exist.
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = |x| + |x − 1| at x = 1
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x[x]",", "if" 0 ≤ x < 2),((x - 1)x",", "if" 2 ≤ x < 3):}` at x = 2
If f(x) = `x^2 sin 1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.
If f(x) = `{{:("m"x + 1",", "if" x ≤ pi/2),(sin x + "n"",", "If" x > pi/2):}`, is continuous at x = `pi/2`, then ______.
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.