मराठी

The Function F (X) = E−|X| is - Mathematics

Advertisements
Advertisements

प्रश्न

The function f (x) = e|x| is

पर्याय

  • continuous everywhere but not differentiable at x = 0

  • continuous and differentiable everywhere

  • not continuous at x = 0

  • none of these

MCQ
बेरीज

उत्तर १

continuous everywhere but not differentiable at x = 0 

Given:

`f(x) = e^(-|x|) = {(e^x , xge0),(e^(-x) ,x< 0):}`
\[\text{ Continuity }: \]
\[ \lim_{x \to 0^-} f(x) \]
\[ = \lim_{h \to 0} f(0 - h) \]
\[ = \lim_{h \to 0} e^{- (0 - h)} \]
\[ = \lim_{h \to 0} e^h \]
\[ = 1\]

RHL at x = 0

\[\lim_{x \to 0^+} f(x) \]
\[ = \lim_{h \to 0} f(0 + h) \]
\[ = \lim_{h \to 0} e^{(0 + h)} \]
\[ = 1\]

and f(0) =

\[f(0) = e^0 = 1\]

Thus,

\[\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f\]

Hence, function is continuous at x = 0
Differentiability at x = 0

(LHD at x = 0)

\[\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0}\]
\[ = \lim_{h \to 0} \frac{e^{- (0 - h)} - 1}{- h}\]
\[ = \lim_{h \to 0} \frac{e^h}{h} \]
\[ = \infty\]

Therefore, left hand derivative does not exist.
Hence, the function is not differentiable at x = 0.

shaalaa.com

उत्तर २

continuous everywhere but not differentiable at x = 0

Explanation:

  1. Continuity: The function f(x) = e−∣x∣ is continuous everywhere because both e−x and ex are continuous functions, and the absolute value function ∣x∣ does not introduce any discontinuities.
  2. Differentiability: At x = 0, f(x) is not differentiable because the derivative from the left and the right do not match.
    • For x > 0: f′(x) = −e−x
    • For x < 0: f′(x) = ex
    • At x = 0: The derivative changes abruptly due to the absolute value term, making the function non-differentiable at x = 0.

Thus, f(x) is continuous everywhere but not differentiable at x = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.4 | Q 6 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\] 

then at x = 0, f (x)


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


The function f (x) =  |cos x| is


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The function given by f (x) = tanx is discontinuous on the set ______.


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×