Advertisements
Advertisements
प्रश्न
The function f (x) = e−|x| is
पर्याय
continuous everywhere but not differentiable at x = 0
continuous and differentiable everywhere
not continuous at x = 0
none of these
उत्तर १
continuous everywhere but not differentiable at x = 0
Given:
`f(x) = e^(-|x|) = {(e^x , xge0),(e^(-x) ,x< 0):}`
\[\text{ Continuity }: \]
\[ \lim_{x \to 0^-} f(x) \]
\[ = \lim_{h \to 0} f(0 - h) \]
\[ = \lim_{h \to 0} e^{- (0 - h)} \]
\[ = \lim_{h \to 0} e^h \]
\[ = 1\]
RHL at x = 0
\[\lim_{x \to 0^+} f(x) \]
\[ = \lim_{h \to 0} f(0 + h) \]
\[ = \lim_{h \to 0} e^{(0 + h)} \]
\[ = 1\]
and f(0) =
Thus,
Hence, function is continuous at x = 0
Differentiability at x = 0
(LHD at x = 0)
\[\lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = \lim_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0}\]
\[ = \lim_{h \to 0} \frac{e^{- (0 - h)} - 1}{- h}\]
\[ = \lim_{h \to 0} \frac{e^h}{h} \]
\[ = \infty\]
Therefore, left hand derivative does not exist.
Hence, the function is not differentiable at x = 0.
उत्तर २
continuous everywhere but not differentiable at x = 0
Explanation:
- Continuity: The function f(x) = e−∣x∣ is continuous everywhere because both e−x and ex are continuous functions, and the absolute value function ∣x∣ does not introduce any discontinuities.
- Differentiability: At x = 0, f(x) is not differentiable because the derivative from the left and the right do not match.
- For x > 0: f′(x) = −e−x
- For x < 0: f′(x) = ex
- At x = 0: The derivative changes abruptly due to the absolute value term, making the function non-differentiable at x = 0.
Thus, f(x) is continuous everywhere but not differentiable at x = 0.
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the f(x) at the indicated points:
(i) f(x) = | x | + | x − 1 | at x = 0, 1.
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
The function
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
The value of f (0) so that the function
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
The function f (x) = |cos x| is
Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3` for x = 1
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
Show that the function f defined by f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
The function given by f (x) = tanx is discontinuous on the set ______.
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = |x| + |x − 1| at x = 1
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "if" x ≠ 0),(1/2",", "if" x = 0):}` at x = 0
Given functions `"f"("x") = ("x"^2 - 4)/("x" - 2) "and g"("x") = "x" + 2, "x" le "R"`. Then which of the following is correct?
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.