Advertisements
Advertisements
प्रश्न
f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "if" x ≠ 0),(1/2",", "if" x = 0):}` at x = 0
उत्तर
We have f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "if" x ≠ 0),(1/2",", "if" x = 0):}`
Since, f(x) is continuous at x = 0
∴ f(0) = `lim_(x -> 0) "f"(x)`
∴ `1/2 = lim_(x -> 0) (1 - cos "k"x)/(xsinx)`
= `lim_(x -> 0) (1 - cos^2"k"x)/(xsinx) * 1/(1 + cos "k"x)`
= `lim_(x -> 0) (sin^2"k"x)/(xsinx) * 1/(1 + cos"k"x)`
= `lim_(x -> 0) (((sin "k"x)/("k"x))^2 "k"^2)/((sinx)/x) * 1/(1 + cos "k"x)`
= `"k"^2/1 * 1/(1 + 1)`
= `"k"^2/2`
⇒ k2 – 1
⇒ k = ±1
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
f (x) = x – 5
A function f(x) is defined as,
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
For what value of k is the function
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5
For what value of k is the following function continuous at x = 2?
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.
Find all point of discontinuity of the function
The points of discontinuity of the function
\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\]
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Give an example of a function which is continuos but not differentiable at at a point.
Write the points where f (x) = |loge x| is not differentiable.
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
If y = ( sin x )x , Find `dy/dx`
If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`
If the function
f(x) = x2 + ax + b, x < 2
= 3x + 2, 2≤ x ≤ 4
= 2ax + 5b, 4 < x
is continuous at x = 2 and x = 4, then find the values of a and b
Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
A continuous function can have some points where limit does not exist.
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
f(x) = `{{:(|x - 4|/(2(x - 4))",", "if" x ≠ 4),(0",", "if" x = 4):}` at x = 4
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).