मराठी

Find All the Points of Discontinuity Of F Defined By F (X) = | X |− | X + 1 |. - Mathematics

Advertisements
Advertisements

प्रश्न

Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.

बेरीज

उत्तर

Given f (x) = | x |− | x + 1 |.

The two functions, g and h, are defined as

`g(x)=|x|` and `h(x)=|x+1|`

Then ,`f=g-h`

The continuity of g and is examined first.

`g(x)=|x|` can be written as 

`g(x)=[[-x, if   x < 0],[x, if  x ≥ 0]]`

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

`" If c < 0 , then "   g(c)=-c  and  lim_(x->c)g(x)= lim_(x->c)=-c`

`∴ lim_(x->c)g(x)=g(c)`

So, g is continuous at all points < 0.

Case II:

`"If c < 0 , then "g(c)=-c lim_(x->c)g(x)=lim_(x->c)(-x)=-c`

`∴ lim_(x->c)g(x)=g(c)`

So, g is continuous at all points x > 0.

Case III:

`" if c =0 , then " g (c)=g(0)=0`

` lim_(x->0^-)g(x)= lim_(x->0^-)(- x)=0`

` lim_(x->0^+)g(x)= lim_(x->0^+)(x)=0`

` ∴ lim_(x->0^+)g(x)= lim_(x->0^+)(x)=g(0)`

So, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points

`h(x)=|x+1|` can be written as 

`h(x)=[[-(x+1) if   x< -1],[x+1   if x ≥ -1]]`

Clearly, h is defined for every real number.

Let be a real number.

Case I:

`"if c < - 1, then h (c) = - (c +1) and " lim_(x->c) h (x) = lim_(x->c)[-(x+1)]=-(c + 1)`

` ∴ lim _(x-> c) h (x) = h(c) `

So, h is continuous at all points < −1.

Case II:

`"if c > - 1, then h (c) = c +1 and " lim_(x->c) h (x) = lim _(x->c)(x + 1)= c + 1`]

` ∴lim _(x->c) h (x) = h(c)`

So, h is continuous at all points x > −1.

Case III:

if c = -1, then h (c) = h (-1) = -1+1 = 0

`lim _(x->- 1^- ) h (x) = lim_(x->-1^-)[-(x+1)]=-(-1+1)=0`

`lim _(x->- 1^+ ) h (x) = lim_(x->-1^+)( x +1)=(-1+1) =0`

`∴lim _(x->- 1^- ) h (x) = lim_(h->-1^+)= h(-1)`

So, h is continuous at x = −1

From the above three observations, it can be concluded that h is continuous at all points of the real line.

So, g and h are continuous functions.

Thus, g − is also a continuous function.

Therefore, has no point of discontinuity.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.2 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.2 | Q 16 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}(x - a)\sin\left( \frac{1}{x - a} \right), & x \neq a \\ 0 , & x = a\end{array}at x = a \right.\]

 


Discuss the continuity of the function f(x) at the point x = 0, where  \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]

 


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


The points of discontinuity of the function 

\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\] 


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Write the points where f (x) = |loge x| is not differentiable.


The set of points where the function f (x) = x |x| is differentiable is 

 


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


The function given by f (x) = tanx is discontinuous on the set ______.


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",",  "if"  x < 4),("a" + "b"",",  "if"  x = 4),((x - 4)/(|x - 4|) + "b"",", "if"  x > 4):}`
is a continuous function at x = 4.


Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.


A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×