मराठी

Show that the Function F ( X ) = { | 2 X − 3 | [ X ] , X ≥ 1 Sin ( π X 2 ) , X < 1 is Continuous but Not Differentiable at X = 1. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.

थोडक्यात उत्तर

उत्तर

Given: 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\]
Continuity at = 1:
(LHL at x = 1) = 
\[\lim_{x \to 1^-} f(x) = \lim_{h \to 0} f(1 - h) = \lim_{h \to 0} \sin\left( \frac{\pi (1 - h)}{2} \right) = \sin\frac{\pi}{2} = 1\]
(RHL at = 1) = 
\[\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 + h) = \lim_{h \to 0} \left| 2(1 + h) - 3 \right|\left[ 1 + h \right] = \lim_{h \to 0} \left| 2(1 + h) - 3 \right| = 1\]

Hence, (LHL at x = 1) = (RHL at x = 1)

Differentiability at = 1:

\[\left(\text {  LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{1 - h - 1}\]
\[\left( \text { LHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{- h}\]
\[\left( \text { LHD at x } = 1 \right) = \lim_{h \to 0} \frac{\sin\left( \frac{\pi\left( 1 - h \right)}{2} \right) - 1}{- h}\]
\[\left( \text { LHD at x = 1 } \right) = \lim_{h \to 0} \frac{\cos\frac{\ pih}{2} - 1}{- h}\]
\[\left( \text { LHD at x = 1 } \right) = - \frac{\pi}{2} \lim_{h \to 0} \frac{\cos\frac{\ pih}{2} - 1}{\frac{\pi}{2}h} = 0\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{1 + h - 1}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{h}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{- \left( 2\left( 1 + h \right) - 3 \right) - 1}{h}\]
\[\left( \text { RHD at x = 1 } \right) = \lim_{h \to 0} \frac{- 2h}{h} = - 2\]

LHD ≠ RHD
Hence, the function is continuous but not differentiable at x = 1.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.1 | Q 9 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


If f is defined by f (x) = x2, find f'(2).


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

The set of points where the function f (x) = x |x| is differentiable is 

 


The function f (x) = e|x| is


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


Let f (x) = |sin x|. Then,


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×