Advertisements
Advertisements
प्रश्न
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
उत्तर
The left hand limit of f at x = 0 is given by
`lim_(x -> 0^-) "f"(x) = lim_(x -> 0^-) ("e"^(1/x) - 1)/("e"^(1/x) + 1)`
= `(0 - 1)/(0 + 1)`
= −1
Similarly, `lim_(x -> 0^+) "f"(x) = lim_(x -> 0^+) ("e"^(1/x) - 1)/("e"^(1/x) + 1)`
= `lim_(x -> 0^+) (1 - 1/"e"^(1/x))/(1 + 1/"e"^(1/x))`
= `lim_(x -> 0^+) (1 - "e"^((-1)/x))/(1 + "e^((-1)/x)`
= `(1 - 0)/(1 + 0)`
= 1
Thus `lim_(x -> 0^-) "f"(x) ≠ lim "f"(x)_(x -> 0^+)`
Therefore, `lim_(x -> 0) "f"(x)` does not exist. Hence f is discontinuous at x = 0.
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
A function f(x) is defined as,
Discuss the continuity of the following functions at the indicated point(s):
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
For what value of k is the following function continuous at x = 2?
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
If \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
If f (x) is differentiable at x = c, then write the value of
Let f (x) = |x| and g (x) = |x3|, then
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
If \[f\left( x \right) = \left| \log_e |x| \right|\]
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
y = |x – 1| is a continuous function.
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).