मराठी

Show that the Function F Defined as Follows, is Continuous at X = 2, but Not Differentiable Thereat: F ( X ) = ⎧ ⎨ ⎩ 3 X − 2 , 0 < X ≤ 1 2 X 2 − X , 1 < X ≤ 2 5 X − 4 , X > 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]
थोडक्यात उत्तर

उत्तर

Given:  

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

First , we will show that f(x) is continuos at 

\[x = 2\]

We have,
(LHL at x=2)

\[{= \lim}_{x \to 2^-} f(x)\]
\[ = \lim_{h \to 0} f(2 - h) \]
\[ = \lim_{h \to 0} 2(2 - h )^2 - (2 - h)\]
\[ = \lim_{h \to 0} (8 + 2 h^2 - 8h - 2 + h)\]
\[ = 6\]

(RHL at x = 2) 

\[= \lim_{x \to 2^+} f(x) \]
\[ = \lim_{h \to 0} f(2 + h) \]
\[ = \lim_{h \to 0} 5(2 + h) - 4 \]
\[ = \lim_{h \to 0} (10 + 5h - 4) \]
\[ = 6\

and 

\[f(2) = 2 \times 4 - 2 = 6 .\]

Thus,  

\[\lim_{x \to 2^-} f(x)\]
\[\lim_{x \to 2^+} f(x)\]
\[f(2)\]

Hence the function is continuous at x=2.

Now, we will check whether the given function is differentiable at x = 2.

We have,
(LHD at x = 2)

\[\lim_{x \to 2^-} \frac{f(x) - f(2)}{x - 2} \]
\[ = \lim_{h \to 0} \frac{f(2 - h) - f(2)}{- h} \]
\[ = \lim_{h \to 0} \frac{2 h^2 - 7h + 6 - 6}{- h} \]
\[ = \lim_{h \to 0} - 2h + 7 \]
\[ = 7\]

(RHD at x = 2)

\[\lim_{x \to 2^+} \frac{f(x) - f(2)}{x - 2} \]
\[ = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} \]
\[ = \lim_{h \to 0} \frac{10 + 5h - 4 - 6}{h}\]
\[ = 5\]

Thus, LHD at x=2 ≠ RHD at x = 2.
Hence, function is not differentiable at x = 2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Differentiability - Exercise 10.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 10 Differentiability
Exercise 10.1 | Q 4 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Examine the following function for continuity:

f(x) = | x – 5|


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]

 


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if }  x \neq 4 \\ k , & \text{ if }  x = 4\end{cases}\]  is continuous at x = 4, find k.


Let f (x) = | x | + | x − 1|, then


The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


If f is defined by f (x) = x2, find f'(2).


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Write the points where f (x) = |loge x| is not differentiable.


The set of points where the function f (x) = x |x| is differentiable is 

 


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


If f is continuous at x = 0, then find f (0). 

Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×