Advertisements
Advertisements
प्रश्न
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
उत्तर
Given:
\[f\left( x \right) = \begin{cases}\frac{\sin3x}{\tan2x}, if x < 0 \\ \frac{3}{2}, if x = 0 \\ \frac{\log\left( 1 + 3x \right)}{e^{2x} - 1}, if x > 0\end{cases}\]
We observe
(LHL at x = 0) =
\[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right) = \lim_{h \to 0} f\left( - h \right)\]
\[= \lim_{h \to 0} \left( \frac{\sin3\left( - h \right)}{\tan2\left( - h \right)} \right) = \lim_{h \to 0} \left( \frac{\sin3h}{\tan2h} \right) = \lim_{h \to 0} \left( \frac{\frac{3\sin3h}{3h}}{\frac{2\tan2h}{2h}} \right)\]
\[ = \frac{\lim_{h \to 0} \left( \frac{3\sin3h}{3h} \right)}{\lim_{h \to 0} \left( \frac{2\tan2h}{2h} \right)} = \frac{3 \lim_{h \to 0} \left( \frac{\sin3h}{3h} \right)}{2 \lim_{h \to 0} \left( \frac{\tan2h}{2h} \right)} = \frac{3 \times 1}{2 \times 1} = \frac{3}{2}\]
(RHL at x = 1) = \[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right)\]
\[= \lim_{h \to 0} \left( \frac{\log\left( 1 + 3h \right)}{e^{2h} - 1} \right) = \lim_{h \to 0} \left( \frac{3h\frac{\log\left( 1 + 3h \right)}{3h}}{\frac{2h\left( e^{2h} - 1 \right)}{2h}} \right)\]
\[ = \frac{3}{2} \lim_{h \to 0} \left( \frac{\frac{\log\left( 1 + 3h \right)}{3h}}{\frac{\left( e^{2h} - 1 \right)}{2h}} \right) = \frac{3}{2}\frac{\lim_{h \to 0} \left( \frac{\log\left( 1 + 3h \right)}{3h} \right)}{\lim_{h \to 0} \left( \frac{\left( e^{2h} - 1 \right)}{2h} \right)} = \frac{3 \times 1}{2 \times 1} = \frac{3}{2}\]
And
\[f\left( 0 \right) = \frac{3}{2}\]
\[\lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\]
Thus, f(x) is continuous at x = 0.
APPEARS IN
संबंधित प्रश्न
If 'f' is continuous at x = 0, then find f(0).
`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`
Determine the value of 'k' for which the following function is continuous at x = 3
`f(x) = {(((x + 3)^2 - 36)/(x - 3), x != 3), (k, x = 3):}`
A function f(x) is defined as
Show that f(x) is continuous at x = 3
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Find all point of discontinuity of the function
Find f (0), so that \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\] becomes continuous at x = 0.
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 16}{x - 4}, & \text{ if } x \neq 4 \\ k , & \text{ if } x = 4\end{cases}\] is continuous at x = 4, find k.
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Is every differentiable function continuous?
The function f (x) = |cos x| is
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3` for x = 1
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Discuss the continuity of the function f(x) = sin x . cos x.
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).
If f is continuous on its domain D, then |f| is also continuous on D.