Advertisements
Advertisements
प्रश्न
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
उत्तर
We have, f(x) = x3 + 2x2 – 1
For continuity at x = 1
∴ R.H.L. = `lim_(x -> 1^+) "f"(x)`
= `lim_("h" -> 0) "f"(1 + "h")`
= `lim_("h" -> 0) [(1 + "h")^3 + 2(1 + "h")^2 - 1]` = 2
And L.H.L. = `lim_(x -> 1^-) "f"(x)`
= `lim_("h" -> 0) "f"(1 - "h")`
= `lim_("h" -> 0)[(1 - "h")^3 + 2(1 - "h")^2 - 1]` = 2
Also f(1) = 1 + 2 – 1 = 2
Thus `lim_(x -> 1^+) "f"(x) = lim_(x -> 1^-) "f"(x)` = f(1)
Thus f(x) is continuous at x = 1
APPEARS IN
संबंधित प्रश्न
Find the value of 'a' for which the function f defined by
Determine the value of the constant k so that the function
\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\]
For what value of k is the function
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Find all point of discontinuity of the function
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
If \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
The value of f (0) so that the function
Is every continuous function differentiable?
The set of points where the function f (x) = x |x| is differentiable is
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
Let f(x) = `{{:((1 - cos 4x)/x^2",", "if" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if" x > 0):}`. For what value of a, f is continuous at x = 0?
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
y = |x – 1| is a continuous function.
f(x) = `{{:(|x - 4|/(2(x - 4))",", "if" x ≠ 4),(0",", "if" x = 4):}` at x = 4
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`