Advertisements
Advertisements
प्रश्न
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
उत्तर
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is 3.
Explanation:
The given function is discontinuous at x = 0, ± 1 and hence the number of points of discontinuity is 3
APPEARS IN
संबंधित प्रश्न
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if } \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Find all point of discontinuity of the function
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of f (x) = |log |x||.
Let f (x) = |x| and g (x) = |x3|, then
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Find the value of 'k' if the function
f(x) = `(tan 7x)/(2x)`, for x ≠ 0.
= k for x = 0.
is continuous at x = 0.
If y = ( sin x )x , Find `dy/dx`
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
If the function
f(x) = x2 + ax + b, x < 2
= 3x + 2, 2≤ x ≤ 4
= 2ax + 5b, 4 < x
is continuous at x = 2 and x = 4, then find the values of a and b
Let f(x) = `{{:((1 - cos 4x)/x^2",", "if" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if" x > 0):}`. For what value of a, f is continuous at x = 0?
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
If f is continuous on its domain D, then |f| is also continuous on D.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.