मराठी

Find the Values Of A And B So that the Function F(X) Defined by \[F\Left( X \Right) = \Begin{Cases}X + A\Sqrt{2}\Sin X , and \Text{ If }0 \Leq X < \Pi/4 \\ 2x \Cot X + B , - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if }  \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].

बेरीज

उत्तर

Given: is continuous on  \[\left[ 0, \pi \right]\] .

∴ is continuous at x =   \[\frac{\pi}{4}\] and  \[\frac{\pi}{2}\]

At x =  \[\frac{\pi}{4}\], we have

\[\lim_{x \to \frac{\pi}{4}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} - h \right) = \lim_{h \to 0} \left[ \left( \frac{\pi}{4} - h \right) + a\sqrt{2}\sin \left( \frac{\pi}{4} - h \right) \right] = \left[ \frac{\pi}{4} + a\sqrt{2} \sin \left( \frac{\pi}{4} \right) \right] = \left[ \frac{\pi}{4} + a \right]\]

\[\lim_{x \to \frac{\pi}{4}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} + h \right) = \lim_{h \to 0} \left[ 2\left( \frac{\pi}{4} + h \right) \cot \left( \frac{\pi}{4} + h \right) + b \right] = \left[ \frac{\pi}{2} \cot \left( \frac{\pi}{4} \right) + b \right] = \left[ \frac{\pi}{2} + b \right]\]

At x =  \[\frac{\pi}{2}\] , we have

\[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} - h \right) = \lim_{h \to 0} \left[ 2\left( \frac{\pi}{2} - h \right) \cot \left( \frac{\pi}{2} - h \right) + b \right] = b\]
\[\lim_{x \to \frac{\pi}{2}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{2} + h \right) = \lim_{h \to 0} \left[ a \cos 2\left( \frac{\pi}{2} + h \right) - b \sin \left( \frac{\pi}{2} + h \right) \right] = - a - b\]
Since is continuous at x = \[\frac{\pi}{4}\]and x = \[\frac{\pi}{2}\]  we get 
\[\lim_{x \to \frac{\pi}{2}^-} f\left( x \right) = \lim_{x \to \frac{\pi}{2}^+} f\left( x \right) \text{ and } \lim_{x \to \frac{\pi}{4}^-} f\left( x \right) = \lim_{x \to \frac{\pi}{4}^+} f\left( x \right)\]
\[\Rightarrow - b - a = b \text{ and } \frac{\pi}{4} + a = \frac{\pi}{2} + b\]
\[ \Rightarrow b = \frac{- a}{2} . . . \left( 1 \right) \text{ and }  \frac{- \pi}{4} = b - a . . . \left( 2 \right)\]
\[ \Rightarrow \frac{- \pi}{4} = \frac{- 3a}{2} \left[ \text{ Substituting the value of b in eq .}  \left( 2 \right) \right]\]
\[ \Rightarrow a = \frac{\pi}{6}\]
\[ \Rightarrow b = \frac{- \pi}{12} \left[ \text{ From eq } . \left( 1 \right) \right]\]


shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.2 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.2 | Q 6 | पृष्ठ ३६

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Given the function  
\[f\left( x \right) = \frac{1}{x + 2}\] . Find the points of discontinuity of the function f(f(x)).

If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Discuss the continuity and differentiability of f (x) = |log |x||.


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Let f (x) = |x| and g (x) = |x3|, then


Let f (x) = |sin x|. Then,


Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


y = |x – 1| is a continuous function.


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×