Advertisements
Advertisements
प्रश्न
Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if } \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].
उत्तर
Given: f is continuous on \[\left[ 0, \pi \right]\] .
∴ f is continuous at x = \[\frac{\pi}{4}\] and \[\frac{\pi}{2}\]
At x = \[\frac{\pi}{4}\], we have
\[\lim_{x \to \frac{\pi}{4}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} - h \right) = \lim_{h \to 0} \left[ \left( \frac{\pi}{4} - h \right) + a\sqrt{2}\sin \left( \frac{\pi}{4} - h \right) \right] = \left[ \frac{\pi}{4} + a\sqrt{2} \sin \left( \frac{\pi}{4} \right) \right] = \left[ \frac{\pi}{4} + a \right]\]
\[\lim_{x \to \frac{\pi}{4}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{\pi}{4} + h \right) = \lim_{h \to 0} \left[ 2\left( \frac{\pi}{4} + h \right) \cot \left( \frac{\pi}{4} + h \right) + b \right] = \left[ \frac{\pi}{2} \cot \left( \frac{\pi}{4} \right) + b \right] = \left[ \frac{\pi}{2} + b \right]\]
At x = \[\frac{\pi}{2}\] , we have
\[ \Rightarrow b = \frac{- a}{2} . . . \left( 1 \right) \text{ and } \frac{- \pi}{4} = b - a . . . \left( 2 \right)\]
\[ \Rightarrow \frac{- \pi}{4} = \frac{- 3a}{2} \left[ \text{ Substituting the value of b in eq .} \left( 2 \right) \right]\]
\[ \Rightarrow a = \frac{\pi}{6}\]
\[ \Rightarrow b = \frac{- \pi}{12} \left[ \text{ From eq } . \left( 1 \right) \right]\]
APPEARS IN
संबंधित प्रश्न
If 'f' is continuous at x = 0, then find f(0).
`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Show that
is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]
Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when} & x \neq 0 \\ k ,\text{ when } & x = 0\end{cases}\] is continuous at x = 0;
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
If \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\] is differentiable at x = 1, find a, b.
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Discuss the continuity and differentiability of f (x) = |log |x||.
If f (x) is differentiable at x = c, then write the value of
Let f (x) = |x| and g (x) = |x3|, then
Let f (x) = |sin x|. Then,
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]` For x ≠ 1
= `-1/3` For x = 1
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
y = |x – 1| is a continuous function.
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = |x| + |x − 1| at x = 1
f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "if" x ≠ 0),(1/2",", "if" x = 0):}` at x = 0
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.