मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The Total Cost C for Producing X Units is Rs (X2 + 60x + 50) and the Price is Rs (180 - X) per Unit. for How Many Units the Profit is Maximum. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.

बेरीज

उत्तर

Revenue R = x (180 - x)

R = 180x - x2

Profit π(x) = R - C

= (180x - x2) - (x+ 60x + 50)

π(x) = -2x2 + 120x - 50

`(dπ)/(dx)` = -4x + 120

Profit π is maximum

If  `(dπ)/(dx)` = 0 and `(d^2y)/(dx^2)` < 0

`(dπ)/(dx)` = 0

-4x + 120 = 0

x = 30

Now, `(d^2π)/(dx^2)` = -4

`(d^2π)/(dx^2)` = -4 < 0at x = 30

Profit is maximum at x = 30 units.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (July) Set 1

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Define continuity of a function at a point.

 

The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Discuss the continuity and differentiability of f (x) = |log |x||.


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

Let f (x) = |x| and g (x) = |x3|, then


`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


Discuss the continuity of the function f(x) = sin x . cos x.


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×