Advertisements
Advertisements
प्रश्न
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
उत्तर
Revenue = Price × Demand
∴ R = p × x
∴ R = (10800 - 4x2)x
∴ R = 10800x - 4x3
∴ `"dR"/"dx" = 10800 - 12"x"^2`
Since revenue R is an increasing function,
`"dR"/"dx" > 0`
∴ `10800 - 12"x"^2` > 0
∴ 10800 > 12 x2
∴ `10800/12` > x2
∴ 900 > x2
∴ x2 < 900
∴ - 30 < x < 30
∴ x > - 30 and x < 30
But x > - 30 is not possible ....[∵ x > 0]
∴ x < 30
∴ The revenue R is increasing for x < 30.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Show that f(x) = x – cos x is increasing for all x.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
The function f(x) = 9 - x5 - x7 is decreasing for
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
For every value of x, the function f(x) = `1/7^x` is ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.