Advertisements
Advertisements
प्रश्न
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
पर्याय
`[–1, oo)`
[– 2, – 1]
`(-oo, -2]`
[– 1, 1]
उत्तर
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is [– 2, – 1].
Explanation:
The given function is f(x) = 2x3 + 9x2 + 12x – 1
f'(x) = 6x2 + 18x + 12
For increasing and decreasing f'(x) = 0
∴ 6x2 + 18x + 12 = 0
⇒ x2 + 3x + 2 = 0
⇒ x2 + 2x + x + 2 = 0
⇒ x(x + 2) + 1(x + 2) = 0
⇒ (x + 2)(x + 1) = 0
⇒ x = – 2, x = – 1
The possible intervals are `(–oo, – 2), (– 2, – 1), (– 1, oo)`
Now f'(x) = (x + 2) (x + 1)
⇒ `"f'"(x)_((-oo"," -2))` = (–) (–) = (+) increasing
⇒ `"f'"(x)_((-2"," -1))` = (+) (–) = (–) decreasing
⇒ `"f'"(x)_((-1"," oo))` = (+) (+) = (+) increasing.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
The function f(x) = x3 - 3x is ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.