Advertisements
Advertisements
प्रश्न
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
विकल्प
`[–1, oo)`
[– 2, – 1]
`(-oo, -2]`
[– 1, 1]
उत्तर
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is [– 2, – 1].
Explanation:
The given function is f(x) = 2x3 + 9x2 + 12x – 1
f'(x) = 6x2 + 18x + 12
For increasing and decreasing f'(x) = 0
∴ 6x2 + 18x + 12 = 0
⇒ x2 + 3x + 2 = 0
⇒ x2 + 2x + x + 2 = 0
⇒ x(x + 2) + 1(x + 2) = 0
⇒ (x + 2)(x + 1) = 0
⇒ x = – 2, x = – 1
The possible intervals are `(–oo, – 2), (– 2, – 1), (– 1, oo)`
Now f'(x) = (x + 2) (x + 1)
⇒ `"f'"(x)_((-oo"," -2))` = (–) (–) = (+) increasing
⇒ `"f'"(x)_((-2"," -1))` = (+) (–) = (–) decreasing
⇒ `"f'"(x)_((-1"," oo))` = (+) (+) = (+) increasing.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Show that f(x) = x – cos x is increasing for all x.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.