Advertisements
Advertisements
प्रश्न
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
विकल्प
strictly increasing
strictly decreasing
neither increasing nor decreasing
none of these
उत्तर
strictly increasing
\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]
\[\text { Case 1: When }x > 0, \left| x \right| = x\]
\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]
\[ = \frac{x}{1 + x}\]
\[ \Rightarrow f'\left( x \right) = \frac{\left( 1 + x \right)1 - x\left( 1 \right)}{\left( 1 + x \right)^2}\]
\[ = \frac{1}{\left( 1 + x \right)^2} > 0, \forall x \in R\]
\[\text { So,f }\left( x \right) \text { is strictly increasing when }x> 0.\]
\[\text { Case 2: When }x < 0, \left| x \right| = - x\]
\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]
\[ = \frac{x}{1 - x}\]
\[ \Rightarrow f'\left( x \right) = \frac{\left( 1 - x \right)1 - x\left( - 1 \right)}{\left( 1 - x \right)^2}\]
\[ = \frac{1}{\left( 1 - x \right)^2} > 0, \forall x \in R\]
\[\text { So,f }\left( x \right) \text { is strictly increasing when }x <0.\]
\[\text { Thus,f }\left( x \right) \text { is strictly increasing on R } . \]
APPEARS IN
संबंधित प्रश्न
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = x3 − 27x + 5 is monotonically increasing when
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Find `dy/dx,if e^x+e^y=e^(x-y)`
Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Show that f(x) = x – cos x is increasing for all x.
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
The function f(x) = 9 - x5 - x7 is decreasing for
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
The function f(x) = x3 - 3x is ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.