Advertisements
Advertisements
प्रश्न
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
पर्याय
strictly increasing
strictly decreasing
neither increasing nor decreasing
none of these
उत्तर
strictly increasing
\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]
\[\text { Case 1: When }x > 0, \left| x \right| = x\]
\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]
\[ = \frac{x}{1 + x}\]
\[ \Rightarrow f'\left( x \right) = \frac{\left( 1 + x \right)1 - x\left( 1 \right)}{\left( 1 + x \right)^2}\]
\[ = \frac{1}{\left( 1 + x \right)^2} > 0, \forall x \in R\]
\[\text { So,f }\left( x \right) \text { is strictly increasing when }x> 0.\]
\[\text { Case 2: When }x < 0, \left| x \right| = - x\]
\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]
\[ = \frac{x}{1 - x}\]
\[ \Rightarrow f'\left( x \right) = \frac{\left( 1 - x \right)1 - x\left( - 1 \right)}{\left( 1 - x \right)^2}\]
\[ = \frac{1}{\left( 1 - x \right)^2} > 0, \forall x \in R\]
\[\text { So,f }\left( x \right) \text { is strictly increasing when }x <0.\]
\[\text { Thus,f }\left( x \right) \text { is strictly increasing on R } . \]
APPEARS IN
संबंधित प्रश्न
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Show that f(x) = x – cos x is increasing for all x.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
y = x(x – 3)2 decreases for the values of x given by : ______.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
If f(x) = x + cosx – a then ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.