मराठी

The Function F ( X ) = X 1 + | X | is - Mathematics

Advertisements
Advertisements

प्रश्न

The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 

पर्याय

  • strictly increasing

  • strictly decreasing

  • neither increasing nor decreasing

  • none of these

MCQ

उत्तर

 strictly increasing

\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]

\[\text { Case 1: When }x > 0, \left| x \right| = x\]

\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]

\[ = \frac{x}{1 + x}\]

\[ \Rightarrow f'\left( x \right) = \frac{\left( 1 + x \right)1 - x\left( 1 \right)}{\left( 1 + x \right)^2}\]

\[ = \frac{1}{\left( 1 + x \right)^2} > 0, \forall x \in R\]

\[\text { So,f }\left( x \right) \text { is strictly increasing when }x> 0.\]

\[\text { Case 2: When }x < 0, \left| x \right| = - x\]

\[f\left( x \right) = \frac{x}{1 + \left| x \right|}\]

\[ = \frac{x}{1 - x}\]

\[ \Rightarrow f'\left( x \right) = \frac{\left( 1 - x \right)1 - x\left( - 1 \right)}{\left( 1 - x \right)^2}\]

\[ = \frac{1}{\left( 1 - x \right)^2} > 0, \forall x \in R\]

\[\text { So,f }\left( x \right) \text { is strictly increasing when }x <0.\]

\[\text { Thus,f }\left( x \right) \text { is strictly increasing on R } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 22 | पृष्ठ ४१

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Function f(x) = | x | − | x − 1 | is monotonically increasing when

 

 

 

 

 

 

 

 

 

 

 


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Show that f(x) = x – cos x is increasing for all x.


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


y = x(x – 3)2 decreases for the values of x given by : ______.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


If f(x) = x + cosx – a then ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×