मराठी

Let I be any interval disjoint from (−1, 1). Prove that the function f given by f(x)=x+1x is strictly increasing on I. - Mathematics

Advertisements
Advertisements

प्रश्न

Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.

बेरीज

उत्तर

We have `f (x) = x + 1/x, x in I`

Differentiating w.r.t.x, we get

`f' (x) = 1 - 1/x^2 = (x^2 - 1)/x^2`

`x^2 > 0 (1, 1), x^2 - 1 > 0 = x^2 > 1`

= `x < - 1 or x > 1`

= `x in (-oo, -1) or x in (1, oo)`

= `x in (-oo, -1) cup (1, oo) `

= `x in R -  (-1, 1)`

= f (x) is strictly increasing on I

(∵ I is an interval which is a subset of R - (-1, 1))

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.2 | Q 15 | पृष्ठ २०६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Show that the function f(x) = 4x3 - 18x2 + 27x - 7 is always increasing on R.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Determine the values of x for which the function f(x) = x2 − 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 − 6x + 9 where the normal is parallel to the line y = x + 5 ? 


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Show that f(x) = x – cos x is increasing for all x.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f (x) = x2, for all real x, is ____________.


In `(0, pi/2),`  the function f (x) = `"x"/"sin x"` is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×