Advertisements
Advertisements
प्रश्न
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
उत्तर
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval `(1, oo)`.
Explanation:
We have f(x) = `(2x^2 - 1)/x^4`
f'(x) = `(x^4(4x) - (2x^2 - 1) * 4x^3)/x^8`
⇒ f'(x) = `(4x^5 - (2x^2 - 1) * 4x^3)/x^8`
= `(4x^3[x^2 - 2x^2 + 1])/x^8`
= `(4(-x^2 + 1))/x^5`
For decreasing the function f'(x) < 0
∴ `(4(-x^2 + 1))/x^5 < 0`
⇒ `-x^2 + 1 < 0`
⇒ x2 < 1
∴ x > ± 1
⇒ `x ∈ (1, oo)`
Hence, the required interval is `(1, oo)`
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Function f(x) = loga x is increasing on R, if
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that f(x) = x – cos x is increasing for all x.
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
The function f(x) = tanx – x ______.
2x3 - 6x + 5 is an increasing function, if ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
A function f is said to be increasing at a point c if ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.