मराठी

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing

उत्तर

We have:

`f(x) = 3x^4 − 4x^3 −12x^2 + 5`

`Now, f'(x) = 12x^3 − 12x^2 − 24x`

`Now, f'(x) = 0`

`⇒12x^3 −12x^2−24x = 0`

`⇒12x(x^2−x−2) = 0`

`⇒12x(x^2−2x+x−2)=0`

`⇒12x[x(x−2)+1(x−2)] = 0`

`⇒12x (x+1)(x−2)=0`

`⇒x=0 ; x = −1; x = 2`

So, the points x = −1, x = 0 and x = 2 divide the real line into four disjoint intervals, namely (,1), (1,0), (0,2) and (2,).

 INTERVAL SIGN OF f ' (x)=12x (x+1)(x −2)  NATURE OF FUNCTION
(,1) ()()()=or<0 Strictly decreasing
(1,0) ()(+)()=+or>0 Strictly increasing
(0,2) (+)(+)() =  or<0 Strictly decreasing
(2,) (+)(+)(+) = + or >0 Strictly increasing


(a) The given function is strictly increasing in the intervals (1,0)  (2,).
(b) The given function is strictly decreasing in the intervals (,1)  (0,2).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


The function f(x) = xx decreases on the interval


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


Function f(x) = loga x is increasing on R, if


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


If f(x) = x + cosx – a then ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×