Advertisements
Advertisements
प्रश्न
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
पर्याय
−1 ≤ k < 1
k < −1 or k > 1
0 < k < 1
−1 < k < 0
उत्तर
\[f\left( x \right) = x^3 - 9k x^2 + 27x + 30\]
\[f'\left( x \right) = 3 x^2 - 18kx + 27\]
\[ = 3 \left( x^2 - 6kx + 9 \right)\]
\[\text { Given: f(x) is increasing on R } . \]
\[ \Rightarrow f'\left( x \right) > 0 \text { for all } x \in R\]
\[ \Rightarrow 3 \left( x^2 - 6kx + 9 \right) > 0 \text { for all } x \in R\]
\[ \Rightarrow x^2 - 6kx + 9 > 0 \text { for all } x \in R\]
\[ \Rightarrow \left( - 6k \right)^2 - 4\left( 1 \right)\left( 9 \right) < 0 \left[ \because a x^2 + bx + c > \text { 0 for all }x \in R \Rightarrow a > \text{0 and Disc}< 0 \right]\]
\[ \Rightarrow 36 k^2 - 36 < 0\]
\[ \Rightarrow k^2 - 1 < 0\]
\[ \Rightarrow \left( k + 1 \right)\left( k - 1 \right) < 0\]
\[\text { It can be possible when } \left( k + 1 \right) < 0 \text { and } \left( k - 1 \right) > 0 . \]
\[ \Rightarrow k < - 1 \text { and } k > 1 (\text { Not possible })\]
\[or \left( k + 1 \right) > 0 \text { and } \left( k - 1 \right) < 0\]
\[ \Rightarrow k > - 1 \text { and } k < 1\]
\[ \Rightarrow - 1 < k < 1\]
\[\text { Disclaimer: (a) part should be } - 1 < k < 1 \text { instead of }-1 \leq k < 1 .\]
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The interval in which y = x2 e–x is increasing is ______.
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Function f(x) = loga x is increasing on R, if
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find MPC ( Marginal propensity to Consume ) and APC ( Average Propensity to Consume ) if the expenditure Ec of a person with income I is given as Ec = ( 0.0003 ) I2 + ( 0.075 ) I when I = 1000.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The slope of tangent at any point (a, b) is also called as ______.
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The function `1/(1 + x^2)` is increasing in the interval ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
Which of the following functions is decreasing on `(0, pi/2)`?
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.