मराठी

Find the interval/s in which the function f : R → R defined by f(x) = xex, is increasing. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.

बेरीज

उत्तर

f(x) = xex `\implies` f'(x) = ex (x + 1)

When x ∈ [–1, ∞), (x + 1) ≥ 0 and ex > 0

`\implies` f'(x) ≥ 0

∴ f(x) increases in this interval.

or, we can write f(x) = xex `\implies` f'(x) = ex (x + 1)

For f(x) to be increasing, we have f'(x) = ex (x + 1) ≥ 0 `\implies` x ≥ –1 as ex > 0, ∀ x ∈ R

Hence, the required interval where f(x) increases is [–1, ∞).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (March) Board Sample Paper

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


Which of the following functions is decreasing on `(0, pi/2)`?


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f(x) = tan-1 x is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×