Advertisements
Advertisements
प्रश्न
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
उत्तर
f(x) = xex `\implies` f'(x) = ex (x + 1)
When x ∈ [–1, ∞), (x + 1) ≥ 0 and ex > 0
`\implies` f'(x) ≥ 0
∴ f(x) increases in this interval.
or, we can write f(x) = xex `\implies` f'(x) = ex (x + 1)
For f(x) to be increasing, we have f'(x) = ex (x + 1) ≥ 0 `\implies` x ≥ –1 as ex > 0, ∀ x ∈ R
Hence, the required interval where f(x) increases is [–1, ∞).
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
Which of the following functions is decreasing on `(0, pi/2)`?
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f(x) = tan-1 x is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)