Advertisements
Advertisements
प्रश्न
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
उत्तर
f(x) = xex `\implies` f'(x) = ex (x + 1)
When x ∈ [–1, ∞), (x + 1) ≥ 0 and ex > 0
`\implies` f'(x) ≥ 0
∴ f(x) increases in this interval.
or, we can write f(x) = xex `\implies` f'(x) = ex (x + 1)
For f(x) to be increasing, we have f'(x) = ex (x + 1) ≥ 0 `\implies` x ≥ –1 as ex > 0, ∀ x ∈ R
Hence, the required interval where f(x) increases is [–1, ∞).
APPEARS IN
संबंधित प्रश्न
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The function f (x) = 2 – 3 x is ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
Which of the following graph represent the strictly increasing function.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
y = log x satisfies for x > 1, the inequality ______.