Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = 2 x^3 - 12 x^2 + 18x + 15\]
\[f'\left( x \right) = 6 x^2 - 24x + 18\]
\[ = 6 \left( x^2 - 4x + 3 \right)\]
\[ = 6 \left( x - 1 \right)\left( x - 3 \right)\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 6 \left( x - 1 \right)\left( x - 3 \right) > 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \left[ \text { Since } 6 > 0, 6 \left( x - 1 \right)\left( x - 3 \right) > 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) > 0 \right]\]
\[ \Rightarrow x < 1 \ or \ x > 3\]
\[ \Rightarrow x \in \left( - \infty , 1 \right) \cup \left( 3, \infty \right)\]
\[\text { So },f(x)\text { is increasing on }\left( - \infty , 1 \right) \cup \left( 3, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 6 \left( x - 1 \right)\left( x - 3 \right) < 0\]
\[ \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \left[ \text { Since} 6 > 0, 6 \left( x - 1 \right)\left( x - 3 \right) < 0 \Rightarrow \left( x - 1 \right)\left( x - 3 \right) < 0 \right]\]
\[ \Rightarrow 1 < x < 3 \]
\[ \Rightarrow x \in \left( 1, 3 \right)\]
\[\text { So },f(x)\text { is decreasing on }\left( 1, 3 \right).\]
APPEARS IN
संबंधित प्रश्न
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
Function f(x) = x3 − 27x + 5 is monotonically increasing when
Every invertible function is
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Find the value of x, such that f(x) is increasing function.
f(x) = x2 + 2x - 5
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
The function `"f"("x") = "x"/"logx"` increases on the interval
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Let 'a' be a real number such that the function f(x) = ax2 + 6x – 15, x ∈ R is increasing in `(-∞, 3/4)` and decreasing in `(3/4, ∞)`. Then the function g(x) = ax2 – 6x + 15, x∈R has a ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.