हिंदी

Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = 3 2 X 4 − 4 X 3 − 45 X 2 + 51 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?

योग

उत्तर

\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]

\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]

\[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\]

\[f'\left( x \right) = 6 x^3 - 12 x^2 - 90x\]

\[ = 6x\left( x^2 - 2x - 15 \right)\]

\[ = 6x\left( x - 5 \right)\left( x + 3 \right)\]

\[\text { Here, } x = - 3, x = 0 \text { and }x = 5 \text { are the critical points }.\]

\[\text { The possible intervals are }\left( - \infty , - 3 \right),\left( - 3, 0 \right),\left( 0, 5 \right)\text { and }\left( 5, \infty \right). .....(1)\]

\[\text { For f(x) to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) > 0 \left[\text {  Since,} 6 > 0, 6x\left( x - 5 \right)\left( x + 3 \right) > 0 \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) > 0 \right]\]

\[ \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) > 0\]

\[ \Rightarrow x \in \left( - 3, 0 \right) \cup \left( 5, \infty \right) \left[ \text { From eq.} (1) \right]\]

\[\text { So,f(x)is increasing on x } \in \left( - 3, 0 \right) \cup \left( 5, \infty \right) .\]

\[\text { For  f(x) to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) < 0 \left[ \text { Since }6 > 0, 6x\left( x - 5 \right)\left( x + 3 \right) < 0 \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) < 0 \right]\]

\[ \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) < 0\]

\[ \Rightarrow x \in \left( - \infty , - 3 \right) \cup \left( 0, 5 \right) \left[ \text { From eq.} (1) \right]\]

\[\text { So,f(x)is decreasing on x } \in \left( - \infty , - 3 \right) \cup \left( 0, 5 \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 1.27 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12`  is (a) strictly increasing, (b) strictly decreasing


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Function f(x) = ax is increasing on R, if


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


The function f(x) = tanx – x ______.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


If f(x) = x + cosx – a then ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×