हिंदी

Show that the function f(x) = x-2x+1, x ≠ – 1 is increasing - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing

योग

उत्तर

f(x) = `(x - 2)/(x + 1)` for x ≠ – 1

For function to be increasing, f'(x) > 0

Then, f'(x) = `((x + 1)"d"/("d"x)(x - 2) - (x - 2)"d"/("d"x)(x + 1))/(x + 1)^2`

= `((x + 1) - (x - 2))/(x + 1)^2`

= `(x + 1 - x + 2)/(x + 1)^2`

= `3/(x + 1)^2 > 0`      .......[∵ (x + 1) ≠ 0, (x + 1)2 > 0]

Thus, f(x) is an increasing function for x ≠ – 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.4: Applications of Derivatives - Q.4

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is

(a) strictly increasing

(b) strictly decreasing


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


What are the values of 'a' for which f(x) = ax is increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if

 


Function f(x) = ax is increasing on R, if


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The function f(x) = x3 + 3x is increasing in interval ______.


Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×