Advertisements
Advertisements
प्रश्न
Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing
उत्तर
f(x) = `(x - 2)/(x + 1)` for x ≠ – 1
For function to be increasing, f'(x) > 0
Then, f'(x) = `((x + 1)"d"/("d"x)(x - 2) - (x - 2)"d"/("d"x)(x + 1))/(x + 1)^2`
= `((x + 1) - (x - 2))/(x + 1)^2`
= `(x + 1 - x + 2)/(x + 1)^2`
= `3/(x + 1)^2 > 0` .......[∵ (x + 1) ≠ 0, (x + 1)2 > 0]
Thus, f(x) is an increasing function for x ≠ – 1.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Function f(x) = ax is increasing on R, if
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
The function `"f"("x") = "x"/"logx"` increases on the interval
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
The function f(x) = x3 + 3x is increasing in interval ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.