हिंदी

Find the Intervals in Which F(X) = Sin X − Cos X, Where 0 < X < 2π is Increasing Or Decreasing ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?

योग

उत्तर

\[f\left( x \right) = \sin x - \cos x, x \in \left( 0, 2\pi \right)\]

\[f'\left( x \right) = \cos x + \sin x\]

\[\text { For f(x) to be increasin, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow \cos x + \sin x > 0\]

\[ \Rightarrow \sin x > - \cos x\]

\[ \Rightarrow \tan x > - 1\]

\[ \Rightarrow x \in \left( 0, \frac{3\pi}{4} \right) \cup \left( \frac{7\pi}{4}, 2\pi \right)\]

\[\text { So,f(x)is increasing on } \left( 0, \frac{3\pi}{4} \right) \cup \left( \frac{7\pi}{4}, 2\pi \right) . \]

\[\text { For f(x) to be decreasing we must have},\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow \cos x + \sin x < 0\]

\[ \Rightarrow \sin x < - \cos x\]

\[ \Rightarrow \tan x < - 1\]

\[ \Rightarrow x \in \left( \frac{3\pi}{4}, \frac{7\pi}{4} \right)\]

\[\text { So,f(x)is decreasing on }\left( \frac{3\pi}{4}, \frac{7\pi}{4} \right).\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 3 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 + 9x + 15 ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ? 


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Let f(x) = x3 − 6x2 + 15x + 3. Then,


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


Function f(x) = loga x is increasing on R, if


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


Which of the following functions is decreasing on `(0, pi/2)`?


The function f (x) = x2, for all real x, is ____________.


The function f(x) = tan-1 x is ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


If f(x) = x + cosx – a then ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×