Advertisements
Advertisements
प्रश्न
Let f(x) = x3 − 6x2 + 15x + 3. Then,
विकल्प
f(x) > 0 for all x ∈ R
f(x) > f(x + 1) for all x ∈ R
f(x) is invertible
none of these
उत्तर
f(x) is invertible
f(x) =x3 − 6x2 + 15x + 3
\[f'(x) = 3 x^2 - 12x + 15\]
\[ = 3\left( x^2 - 4x + 5 \right)\]
\[ = 3\left( x^2 - 4x + 4 + 1 \right)\]
\[ = 3 \left( x - 2 \right)^2 + \frac{1}{3} > 0\]
\[\text { Therefore, f(x) is strictly increasing function }. \]
\[ \Rightarrow f^{- 1} (x) \text { exists } . \]
\[\text { Hence, f(x) is an invertible function } .\]
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 107 ?
Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Function f(x) = cos x − 2 λ x is monotonic decreasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The values of a for which the function f(x) = sinx – ax + b increases on R are ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f (x) = x2, for all real x, is ____________.
Which of the following graph represent the strictly increasing function.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
A function f is said to be increasing at a point c if ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.