हिंदी

Which of the following functions are strictly decreasing on (0,π2)? A. cos x B. cos 2x C. cos 3x D. tan x - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x
योग

उत्तर

(A) Let (x) = cos x, then   

f' (x) =  - sin x < 0 for all `x in (0, pi/2)`     ....`[∴ sin x > 0 AA x in (0, pi/2)]`

(B) Let f(x) = cos 2x, then

f'(x) = -2 sin 2x < 0 for all `x in (0, pi/2)`    ...(`∵ sin  x > 0 (0, pi) = sin 2x > 0 (0, pi/2)`

= f is strictly decreasing on `(0, pi/2)`

(c) Let f(x) = cos 3x, then f'(x) = -3 sin 3x, 

which assume +ve as well as -ve values in`(0, pi/2)`

`[0 < x < pi/2 = 0 <3x < (3pi)/2]`and `sin 3x > 0 (0, pi/2), sin 3x < o (pi, (3pi)/2)`

∴ f is neither increasing nor decreasing on `(0, pi/2)`

(D) Let f(x) = tan x, then f'(x) = sec2 x > 0 for all `x in (0, pi/2)`        ....`[∵ sec^2 x > 0 AA x in (0, pi/2)]`

= f is strictly increasing on `(0, pi/2)`

Thus, we find that the function in (A) and  (B) are strictly decreasing on `(0, pi/2).`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.2 | Q 12 | पृष्ठ २०६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


Function f(x) = ax is increasing on R, if


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The function f(x) = x9 + 3x7 + 64 is increasing on


The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


The function `1/(1 + x^2)` is increasing in the interval ______ 


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Which of the following graph represent the strictly increasing function.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


The function f(x) = sin4x + cos4x is an increasing function if ______.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×